Fundamentals of Thermal-Fluid Sciences, 3rd Edition
Yunus A. Cengel, Robert H. Turner, John M. Cimbala
McGraw-Hill, 2008

Chapter 3
NATURAL CONVECTION

Mehmet Kanoglu

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.



Objectives

Understand the physical mechanism of natural
convection

Derive the governing equations of natural convection,
and obtain the dimensionless Grashof number by
nondimensionalizing them

Evaluate the Nusselt number for natural convection
associated with vertical, horizontal, and inclined plates
as well as cylinders and spheres

Examine natural convection from finned surfaces, and
determine the optimum fin spacing

Analyze natural convection inside enclosures such as
double-pane windows.



PHYSICAL MECHANISM OF CONVECTION
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Conduction and convection both
require the presence of a material
medium but convection requires fluid
motion.

Convection involves fluid motion as
well as heat conduction.

Heat transfer through a solid is always
by conduction.

Heat transfer through a fluid is by
convection in the presence of bulk fluid
motion and by conduction in the
absence of it.

Therefore, conduction in a fluid can be
viewed as the limiting case of
convection, corresponding to the case
of quiescent fluid.
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(¢) Conduction

Heat transfer from a hot surface to
the surrounding fluid by convection
and conduction.




The fluid motion enhances heat transfer, since it brings warmer and
cooler chunks of fluid into contact, initiating higher rates of conduction
at a greater number of sites in a fluid.

The rate of heat transfer through a fluid is much higher by convection
than it is by conduction.

In fact, the higher the fluid velocity, the higher the rate of heat transfer.
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Convection in daily life

Blowing
on food

We resort to forced convection
whenever we need to increase
the rate of heat transfer.

We turn on the fan on hot
summer days to help our
body cool more effectively.
The higher the fan speed,
the better we feel.

We stir our soup and blow
on a hot slice of pizza to
make them cool faster.

The air on windy winter
days feels much colder
than it actually is.

The simplest solution to
heating problems in
electronics packaging is to
use a large enough fan.



Many familiar heat transfer applications involve natural convection as the primary
mechanism of heat transfer. Examples?

Natural convection in gases is usually accompanied by radiation of comparable
magnitude except for low-emissivity surfaces.

The motion that results from the continual replacement of the heated air in the
vicinity of the egg by the cooler air nearby is called a natural convection current,
and the heat transfer that is enhanced as a result of this current is called natural
convection heat transfer. Warm
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The cooling of a boiled egg in a cooler by natural
environment by natural convection. convection.



The density of a fluid, In
general, depends more
strongly on temperature than it
does on pressure, and the
variation of density with
temperature Is resposible for
numerous natural phenomena
such a winds, currents In
oceans, rise of plumes In
chimneys, the operation of hot-
air balloons, heat transfer by
natural convection.

To quantify these effects, we
need a property that represents
the variation of the density of a
flud with temperature at
constant pressure.

Natural convection over a
woman’s hand.



Nusselt number

In convection studies, it 1s common practice to nondimensionalize the gov-
erning equations and combine the variables, which group together into di-
mensionless numbers in order to reduce the number of total variables. It 1s also
common practice to nondimensionalize the heat transfer coefficient i with the
Nusselt number, defined as
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VELOCITY BOUNDARY LAYER

The region of the flow above the plate bounded by & in which the effects
of the viscous shearing forces caused by fluid viscosity are felt is called the
velocity boundary layer. The boundary layer thickness, &, is typically de-
fined as the distance y from the surface at which u = 0.99u...

The hypothetical line of u = 0.99u.. divides the flow over a plate into two
regions: the boundary layer region, in which the viscous effects and the ve-
locity changes are significant, and the inviscid flow region, in which the fric-
tional effects are negligible and the velocity remains essentially constant.
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The development of the boundary layer for flow over a flat plate, and the different flow regimes.
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SURFACE SHEAR STRESS

Consider the flow of a fluid over the surface of a plate. The fluid layer in con-
tact with the surface will try to drag the plate along via friction, exerting a fric-
tion force on it. Likewise, a faster fluid layer will try to drag the adjacent
slower layer and exert a friction force because of the friction between the two
layers. Friction force per unit area is called shear stress, and is denoted by T.
Experimental studies indicate that the shear stress for most fluids is propor-
tional to the velocity gradient, and the shear stress at the wall surface is as

Relative
velocities
i of fluid layers
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) .II i E_JLIJ at the
. 7// surface
FIGURE 6-11

The development of a boundary layer
on a surface is due to the no-slip
condition.



SURFACE SHEAR STRESS

The determination of the surface shear stress 7, from Eq. 6-9 is not practical
since it requires a knowledge of the flow velocity profile. A more practical ap-
proach in external flow is to relate 7, to the upstream velocity V" as

y A

p "=

e

T, = C; (N/m?)

where Cyis the dimensionless friction coefficient, whose value in most cases

is determined experimentally, and p is the density of the fluid. Note that the

friction coefficient, in general, will vary with location along the surface. Once

the average friction coefficient over a given surface is available, the friction

force over the entire surface is determined from

p 2
3

F

Fr= CA, (N)

where A, is the surface area.
The friction coefficient is an important parameter in heat transfer studies
since it is directly related to the heat transfer coefficient and the power re-

quirements of the pump or fan.
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Reynolds number

The transition from laminar to turbulent flow depends on the surface geome-
try, surface roughness, free-stream velocity, surface temperature, and type of
fluid, among other things. After exhaustive experiments in the 1880s, Osborn
Reynolds discovered that the flow regime depends mainly on the ratio of the
inertia forces to viscous forces in the fluid. This ratio is called the Reynolds
number, which is a dimensionless quantity, and is expressed for external flow
as (Fig. 6-106)
Inertia forces VL, B pV'L,

Viscous v ML

where V" is the upstream velocity (equivalent to the free-stream velocity u.. for
a flat plate), L. is the characteristic length of the geometry, and v = p/p is the
kinematic viscosity of the fluid. For a flat plate, the characteristic length is the
distance x from the leading edge.
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THERMAL BOUNDARY LAYER

The flow region over the surface in which the
temperature variation in the direction normal to the surface is significant is the
thermal boundary layer. The thickness of the thermal boundary layer &, at
any location along the surface is defined as the distance from the surface at
which the temperature difference T — T, equals 0.99(T.,. — T;). Note that for
the special case of T, = 0, we have T = 0.997.. at the outer edge of the ther-
mal boundary layer, which is analogous to u = 0.99u,, for the velocity bound-
ary layer.

I. Free-stream T

‘Thermal
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5
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T, +099(T, - T)
FIGURE 6-13

Thermal boundary layer on a flat plate
(the fluid is hotter than the plate 13
surface).




THERMAL BOUNDARY LAYER

Prandtl Number

The relative thickness of the velocity and the thermal boundary layers is best
described by the dimensionless parameter Prandtl number, defined as

~_ Molecular diffusivity of momentum ,, nC,
t Molecular diffusivity of heat B
Typical ranges of Prandtl numbers
for common fluids
Fluid Pr
Liquid metals 0.004-0.030
Gases 0.7-1.0
Water 1.7-13.7
Light organic fluids 5-50
Oils 50-100,000
Glycerin 2000-100,000

14




DERIVATION OF DIFFERENTIAL
CONVECTION EQUATIONS*

Conservation of Mass Equation

The conservation of mass principlgis simply a statement that mass cannot be
created or destroyed, and all the mass must be accounted for during an analy-
sis. In steady flow, the amount of mass within the control volume remains
constant, and thus the conservation of mass can be expressed as

( Rate of mass flow ) _ ( Rate of mass flow )
into the control volume .out of the control volume

% .

av
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DERIVATION OF DIFFERENTIAL
CONVECTION EQUATIONS*

Conservation of Momentum Equations

T +E.'_‘L' dv om - d, = F surface, x + F body, x
dy
T —— S om = p(dx - dy - 1)
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DERIVATION OF DIFFERENTIAL
CONVECTION EQUATIONS*

Conservation of Energy Equation
The energy balance for any system undergoing any process is expressed as
Ei, — Egy = AEygem. Which states that the change in the energy content of a
system during a process is equal to the difference between the energy input
and the energy output. During a steady-flow process, the total energy content
of a control volume remains constant (and thus AE;g., = 0). and the amount
of energy entering a control volume in all forms must be equal to the amount
of energy leaving it. Then the rate form of the general energy equation reduces
for a steady-flow processto £,, — E_,, = 0.

Noting that energy can be transferred by heat, work, and mass only, the en-
ergy balance for a steady-flow control volume can be written explicitly as

Eheat. out. ¥ E'mass. out. ¥
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DERIVATION OF DIFFERENTIAL
CONVECTION EQUATIONS*

Conservation of Energy Equation
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DERIVATION OF DIFFERENTIAL
CONVECTION EQUATIONS*

Conservation of Energy Equation

Then the energy equation for the steady two-dimensional flow of a fluid
with constant properties and negligible shear stresses is obtained by substitut-
ing Eqs. 6-32 and 6-34 into 6-30 to be

pC, I: 1’£+ 9T | = kl: T d_T|
ay axt oy
which states that the net energy Cﬂnvecfed by the fluid out of the control vol-
ume is equal to the net energy transferred into the control volume by heat
conduction.
When the viscous shear stresses are not negligible, their effect is accounted

for by expressing the energy equation as

aT . aT\ [&T a?Tj
pCF(H X + v H'}ej R(Hi e + b

where the viscous dissipation function @ is obtained after a lengthy analysis
(see an advanced book such as the one by Schlichting (Ref. 9) for details) to be
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DERIVATION OF DIFFERENTIAL

CONVECTION EQUATIONS*
Conservation of Energy Equation

Viscous dissipation may play a dominant role in high-speed flows, especially
when the viscosity of the fluid is high (like the flow of oil in journal bearings).
This manifests itself as a significant rise in fluid temperature due to the con-
version of the Kinetic energy of the fluid to thermal energy. Viscous dissipa-
tion 1s also significant for high-speed flights of aircraft.

For the special case of a|stationary fluid, u = v =0

and the energy equation

reduces, as expected, to the steady two-dimensional heat conduction equation,

T T
5 ! 5 0
dx=  dy-




SOLUTION OF CONVECTION EQUATION
FOR A FLAT PLATE

When viscous dissipation is negligible, the continuity, momentum, and en-
ergy equations reduce for steady, incompressible, laminar flow of a fluid with
constant properties over a flat plate to

; 1.,
Continuity: g—ﬂ + g—]' =0 ",
X dy
ou ol U T
Momentum: U—+v—_—=v_— "
dx dy dy- v f ” I
E . ﬂ-' ﬂ-‘ _ 3T ~ ,f—f*“"________________
nergy. U+ ay ~ @ 0y o
\\\\\\.\\\\\\\\\\“\\\\\\\\\0\\\_\\}\\\\\\\
with the boundary conditions ?5:0; —0
Atx=0: w0, y)=u., T0.y)=T. Ir'(x0) =T

Aty =0: ulx, 0y =0, vix, ) =0,T(x, 0) =T,
Asy—or uwx, ®)=u,, Tx x)=T,
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SOLUTION OF CONVECTION EQUATION
FOR A FLAT PLATE

The continuity and momentum equations were first solved in 1908 by the
German engineer H. Blasius, a student of L. Prandtl. This was done by trans-
forming the two partial differential equations into a single ordinary differen-

tial equation by introducing a new independent variable, called the similarity
variable. The finding of such a variable, assuming it exists, 1s more of an art

than science, and it requires to have a good insight of the problem.

although both & and u at a given y vary with x, the velocity u at a fixed
v/6 remains constant. Blasius was also aware from the work of Stokes that &

is proportional to \/vx/u.. and thus he defined a dimensionless similarity
variable as

_
m= f‘*‘\,r'ﬁ

and thus w/u,, = function(m). He then introduced a stream function \b(x, v)

22



SOLU

ION OF CONVEC

FOR A FLAT PLATE

m=Y\wx
s s
u=—-— and V= ——
dy dX
_ U
f) = TERVAGTITE
_ o dpam _ u’ df . dr
dy  dn dy "., u.. dn “. VX “dn
Lo O .'Er’*_f_u_r.Tf:l:ﬁ( daf )
ox “Vumax 2 Vuex? "2V x \May
_ e d¥ o [d¥  du_w@dy
ax  2x Vdn? ay =\ x dn?®’ gy vx dn’
d’f  d 2f
dn’
df df
floy=20 — =0, and —
dn|n=0 dn |n==

|ION EQUA

ION

Similarity function f and its
derivatives for laminar boundary
layer along a flat plate.

fooodf _u dF
M dn U dm 2
0 0 0 0.332
0.5 0.042 0.166 0.331
1.0 0.166  0.330 0.323
1.5 0.370  0.487 0.303
2.0 0.650 0.630 0.267
2.5 0.996 0.751 0.217
3.0 1.397 0.846 0.161
3.5 1.838 0.913 0.108
4.0 2.306  0.956 0.064
4.5 2.790  0.980 0.034
5.0 3.283 0.992 0.016
5.5 3.781 0.997 0.007
6.0 4.280 0.999 0.002
oo oo 1 0
1 23



SOLUTION OF CONVECTION EQUATION
FOR A FLAT PLATE

the velocity boundary layer thickness becomes

s__ 50 _ 50
Vi /vy \/Re,

since Re, = u..x/v, where x is the distance from the leading edge of the plate.
Note that the boundary layer thickness increases with increasing kinematic
viscosity v and with increasing distance from the leading edge x, but it de-
creases with increasing free-stream velocity u... Therefore, a large free-stream
velocity will suppress the boundary layer and cause it to be thinner.

The shear stress on the wall can be determined from

B PRl 0.332puz
Tw = 0.332u.. \ x VR

Then the local skin friction coefficient becomes

— —

e iy

C,.=—— =—"_ =(.664 Re 2
M pVH2 O puii2 ©a

Note that unlike the boundary layer thickness, wall shear stress and the skin
friction coefficient decrease along the plate as x~ /2.



SOLUTION OF CONVECTION EQUATION
FOR A FLAT PLATE

The Energy Equation

Knowing the velocity profile, we are now ready to solve the energy equation
for temperature distribution for the case of constant wall temperature T,. First
we introduce the dimensionless temperature 6 as

8%, ) I(x,y) — 1,
_I'. "l._!' e
- I. — T
Noting that both T, and T, are constant, substitution into the energy equation

gives

00 00 '8
ax dy ﬂ:ﬂy?

d’o do
&8 L pr
an? T

25



CONVECTION FOR A FLAT PLATE

Then the local convection coefficient and Nusselt number become

; —k(aT/av)|,- 7 1 rL
ho=—2 @OT/3)ly=o _ 0332Pr'3k |— h= —J h dx
T'i o Trc Tﬁ' o Tx 11!' VX L 0

and
, h.x o
Nu, = - = 0.332 Pr'/°Re}/? Pr > 0.6

Then the thermal boundary layer thickness becomes

5, — 5 5.0x
[ Pr 1/3 Pr 1/3 ‘\»R e,

Note that these relations are valid only for laminar flow over an isothermal flat
plate. Also, the effect of variable properties can be accounted for by evaluat-
ing all such properties at the film temperature defined as 7y = (T, + T.)/2.
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CONVECTION FOR A FLAT PLATE

NONDIMENSIONALIZED CONVECTION
EQUATIONS AND SIMILARITY

% _ A k) # i % V = . r—T
X'=—, Yy =5, U =gz V =5, P =—% and T = -
L - L 4 ! p I, —T,
i .k
L u v
Continuity: - : + - ==0
dx dy
sl il 1 o°u” dP
Momentum: ui, z + 1-‘*‘_ ¥ " Re, au#2 %
ax A CLay™  dx
- R -
w0 T 0T 1 o-T
Energy: uii _ 4 p* =

ax : H}l* R'E:L Pl' H-‘L’I*E

u(0,y*) =1, w*x*0)=0, w*(x* «)=1, v¥x* 0)=0,
T#(0.v*) =1, T*x*0)=0, T¥x* =)=1



CONVECTION FOR A FLAT PLATE

ANALOGIES BETWEEN MOMENTUM AND
HEAT TRANSFER

Reconsider the nondimensionalized momentum and energy equations for
steady, incompressible, laminar flow of a fluid with constant properties and
negligible viscous dissipation (Eqgs. 6-65 and 6-66). When Pr = 1 (which 1s
approximately the case for gases) and dP*/ax* = 0 (which is the case when,
U = U, = V' = constant in the free stream, as in flow over a flat plate), these

equations simplify to

oy ST -7 H

01 .U 1 o-u
Momentum: U'— +vi—x = —
ax ay Re;, dv™~
Energy: u*—ﬁT$ + v*aTg _ L &7
. _— - BT - e
: ax” ay Re; d}'*‘



CONVECTION FOR A FLAT PLATE

ANALOGIES BETWEEN MOMENTUM AND

HEAT TRANSFER

Re, :
C; ., —— = Nu, (Pr=1)

fix n

which is known as the Reynolds analogy (Fig. 6-32). This is an important
analogy since it allows us to determine the heat transfer coefficient for fluids
with Pr = 1 from a knowledge of friction coefficient which is easier to mea-
sure. Reynolds analogy is also expressed alternately as

C

f.x

—St,  (Pr=1)

2
where

h Nu

U= 0CT T Re,Pr

is the Stanton number, which is also a dimensionless heat transfer coefficient.



CONVECTION FOR A FLAT PLATE

ANALOGIES BETWEEN MOMENTUM AND
HEAT TRANSFER

Reynolds analogy is of limited use because of the restrictions Pr = 1 and
dP*/ax* = 0 on it, and it is desirable to have an analogy that is applicable over
a wide range of Pr. This is done by adding a Prandtl number correction. The
friction coefficient and Nusselt number for a flat plate are determined in Sec-
tion 6-8 to be

Cr . = 0.664 Re; '~ and Nu, = 0.332 Pr'” Rel?

Taking their ratio and rearranging give the desired relation, known as the
modified Reynolds analogy or Chilton—Colburn analogy,

Re, Ce h,

pp— i3 : — : 23 —= ¢
- —— = Nu, Pr or 5 Pre = jy

C =—
- < pC,V

for 0.6 << Pr << 60. Here j is called the Colburn j-factor. Although this rela-
tion is developed using relations for laminar flow over a flat plate (for which
daP*[ax* = (), experimental studies show that it is also applicable approxi-
mately for turbulent flow over a surface, even in the presence of pressure gra-

dients.



Quiz
1. Using the differential element shown in the figure, prove that in the

hydroyinamic boundary layer the continuity equation is:

|.'|'!I I:I"l' 0

1.X ayv
T,
.
! J—
— Velocity
B L,_h, D boundary
X layer

\\\Y\\\\N\\\\\\\N

2. Define the Prandtl number and say what is its principal application
in heat transfer problems.
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Example

The flow of oil in a journal bearing can be approximated as parallel flow be-
tween two large plates with one plate moving and the other stationary. Such

flows are known as Couette flow.

Consider two large isothermal plates separated by 2-mm-thick oil film. The
upper plates moves at a constant velocity of 12 m/s, while the lower plate is sta-
tionary. Both plates are maintained at 20°C. (a) Obtain relations for the velocity
and temperature distributions in the oil. (b) Determine the maximum tempera-
ture in the oil and the heat flux from the oil to each plate (Fig. 6-25).

Moving
plate
\ / V=12 m/s
¥ —_—
| | - |
A
ST m o WY) oo
— Sl ___________________I
\— Stationary
plate

FIGURE 6-25



Exercise

6—11 Dwuring air cooling of oranges, grapefruit, and tangelos,
the heat transfer coefficient for combined convection., radia-

tion, and evaporation for air velocities of 0.11 =< << 0.33 m/s
1s determined experimentally and is expressed as i = 35.05

k... Re'3/D, where the diameter DD is the characteristic length.
Oranges are cooled by refrigerated air at 5°C and 1 atm at a ve-
locity of 0.5 m/s. Determine (a) the initial rate of heat transfer
from a 7-cm-diameter orange initially at 15°C with a thermal
conductivity of 0.50 W/m - "C, (/) the value of the initial tem-
perature gradient inside the orange at the surface, and (c) the
value of the Nusselt number.

Aiar
5°C

| atm —™ Orange
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Exercise

A 2-m X 3-m flat plate is suspended in a room, and is subjected to air flow par-
allel to its surfaces along its 3-m-long side. The free stream temperature and
velocity of air are 20°C and 7 m/s. The total drag force acting on the plate is
measured to be 0.86 N. Determine the average convection heat transfer coeffi-
cient for the plate (Fig. 6-33).

Air
20°C, T m/fs

W
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FORCED CONVECTION
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PARALLEL FLOW OVER FLAT PLATES

The transition from laminar to turbulent flow depends on the surface geometry,
surface roughness, upstream velocity, surface temperature, and the type of fluid,
among other things, and is best characterized by the Reynolds number. The
Reynolds number at a distance x from the leading edge of a flat plate is

expressed as pVx vy
Re, = =

! I Y

A generally accepted value for
the Critical Reynold number

. erL‘.I‘
cr ,'J,.

=5 X 10°

Y)Y

J‘Lﬁujuju”ﬂ The actual value of the engineering
f{? Turbulent ) critical Reynolds number for a flat

m/) 3 8}3 plate may vary somewhat from 10°
) to 3 x 109, depending on the
T, ‘ surface roughness, the turbulence
level, and the variation of pressure
) L g along the surface.

Laminar and turbulent regions of the
boundary layer during flow over a flat plate. 36



The local Nusselt number at a location x for laminar flow over a flat
plate may be obtained by solving the differential energy equation to be

+ h,x 0.5 ppl/3 -
Laminar: Nu, = i 0.332 Re,” Pr'” Pr> 0.6
h.x _ 0.6 =Pr=60
Turbulent: Nu, = — = 0.0296 Re?® Pr'3 _
Tk | 5 X 10° = Re, = 107

These relations are for
isothermal and smooth surfaces

The local friction and heat transfer
coefficients are higher in turbulent
flow than they are in laminar flow.

Also, h, reaches its highest values
when the flow becomes fully
turbulent, and then decreases by a
factor of x %2 in the flow direction.

The variation of the local
minar |1 friction and heat transfer
— =l coefficients for flow over

\-'q.:‘-x'\.'\.\\ AR SRR

X a flat plate.

Laminar |Transition ! Turbulent |
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Nusselt numbers for average heat transfer coefficients

, hlL - . _ _
Laminar: Nu = !T = 0.664 Re{? Pr!/3 Re, <35 X 10°
‘ ‘ _hL ., 08 o1/ 0.6 = Pr =060
Turbulent: Nu = — = 0.037 Rej*° Pr'/- B ) i}
k 5 X 105=Re, = 107
- 0.6 = Pr =60 :
Nu = % = (0.037 Re?® — 871)Pr'? ﬂ ikl
5 % 10° = Re; = 107 turbulent
B "L
h = l ( I I IL laminar dx + h.n turbulent ":'F"'T) "t hx-‘ turbulent
L __.'D JXar f 3 |
havz I

For liquid metals | [T T T T R
Nu, = 0.565(Re, Pr)!? Pr < 0.05

For all liquids, all Prandtl numbers h

hx 0.3387 Pr'/3 Rel2
Nlh - - - = /37174
| k [1 + (0.0468/Pr)*°]"

x, laminar

Graphical representation of the average Turbulent

|
rl
|
il
|

heat transfer coefficient for a flat plate with "ﬁ\\ S e o

combined laminar and turbulent flow. " Yer L

=y



Flat Plate with Unheated Starting Length

Local Nusselt numbers

L . N NU*. (for £=0) [}+3‘:2'2 RCT‘; Pl‘ 3
amindadr. U, = 4113 e 341173
O = @R L = (Ex)HE

' NU.*.' (for £=10) (.0296 RC?H Prl,-"_%
Turbulent: Nu, = T (200715 = 1 — (&/x) 0]

Average heat transfer coefficients

| 201 — (£1x)¥4] T,
Laminar: h = B h.—; %
| —&/L — Thermal boundary layer
Turbulent: | ol _(“(“:/'Y}W]f " Velocity boundary layer
urbulent. h =—y 7 /D) .-y __,  Velocity o{aly ayet ______A______
=
e S
AT I ity
Flow over a flat plate | '3
with an unheated

starting length.



Uniform Heat Flux
For a flat plate subjected to uniform heat flux

Laminar: Nu, = 0.453 Re> Pr!/?

Turbulent: Nu, = 0.0308 Re{® Pr!/

These relations give values that are 36 percent higher for
laminar flow and 4 percent higher for turbulent flow relative
to the isothermal plate case.

When heat flux is prescribed, the rate of heat transfer to or
from the plate and the surface temperature at a distance x
are determined from

*

Q — C]“FA'F'

ds
G =hIT()—T.  —  T@=T.+;"
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Example

Water at 43.3°C flows over a large plate at a velocity of 30 cm/s. The
plate is 1.0 m long (in the flow direction), and its surface is maintained
at uniform temperature of 10 °C. Calculate the steady rate of heat
transfer per unit width of the plate.

Water < .
V=30 cm/s — - I5=10°C
Tr=43.3°C 2
L=1m
- =
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Example

Parallel plates form a solar collector that covers a roof, as shown in the
figure. The plates are maintained at 15°C, while ambient air at 10°C
flows over the roof with V=2 m/s. Determine the rate of convetive heat

loss from the first plate.

/ i I m

=y /1 /5%

/ 42




FLOW ACROSS CYLINDERS AND
SPHERES

Flows across cylinders and spheres, in general, involve flow separation,
which is difficult to handle analytically.

Flow across cylinders and spheres has been studied experimentally by
numerous investigators, and several empirical correlations have been
developed for the heat transfer coefficient.

Smg&ﬁon \ SEIB%T.I%IEU“
Boundary laver

The characteristic length for a circular cylinder or sphere is taken to be the
external diameter D. Thus, the Reynolds number is defined as Re = V' D/v
where V" is the uniform velocity of the fluid as it approaches the cylinder or
sphere. The critical Reynolds number for flow across a circular cylinder or
sphere is about Re,, = 2 X 10°. That is, the boundary layer remains laminar 43
for about Re =< 2 X 10° and becomes turbulent for Re = 2 X 10°.



FLOW ACROSS CYLINDERS AND
SPHERES

5 | x*___‘ | 11 _Smﬂ-crth-:}fllnder—i

I HH \(’J’---"h IIII" |
0.6 \ \
0.4 1 | I
0.2 Sphere
0.1 \-.._.f":
0.06 - _
10-! 100 101 10? 10° 104 10~ 10°

Average drag coefficient for cross flow over a smooth circular
cylinder and a smooth sphere (from Schlichting, Ref. 10). 44



FLOW ACROSS CYLINDERS AND
SPHERES

* For Re = 1, we have creeping flow, and the drag coefficient decreases
with increasing Reynolds number. For a sphere, it is Cp = 24/Re. There is
no flow separation in this regime.

* Atabout Re = 10, separation starts occurring on the rear of the body with
vortex shedding starting at about Re = 90. The region of separation
increases with increasing Reynolds number up to about Re = 10°. At this
point, the drag is mostly (about 95 percent) due to pressure drag.

* In the moderate range of 10° << Re < 10°, the drag coefficient remains
relatively constant.

« There is a sudden drop in the drag coefficient somewhere in the range of
10° << Re << 10° (usually, at about 2 X 10°). This large reduction in Cp, is
due to the flow in the boundary layer becoming turbulent, which moves
the separation point further on the rear of the body, reducing the size of
the wake and thus the magnitude of the pressure drae.
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FLOW ACROSS CYLINDERS AND
SPHERES

Effect of Surface Roughness

0.6
£ = relative roughness
0.5 — D
...---"""'t o 4
IR \

0 A \‘ -
a LA . e o —_— =
= Golf—" 1 l d L — T

a|5E ball 1 '." | e -
= ;-:_:._ 0.3 1‘ L . #/ ”/
e \| \ ,4 Lz‘ )
|!-. h*"-‘_l..l—-— -
) ' l /
0.2 s -
Epe A Vi / £ _—
T ) \ / E=D(smncrlh)
0.1 £ _sx103- )J \%
£ - 1.5x10°3
0 - -
4x10% 10° 4107 108 4x106
VD

Re=~3"

Co
Smooth Rough surface,
Re surface /D= 0.0015
105 0.5 0.1
106 0.1 0.4

The effect of surface roughness on the drag coefficient of a sphere (from Blevins, Ref. 1).

Surface roughness may increase
or decrease the drag coefficient
of a spherical object, depending on
the value of the Reynolds number.
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FLOW ACROSS
CYLINDERS AND
SPHERES

« Heat Transfer
Coefficient.

Variation of the local heat
transfer coefficient along the
circumference of a circular
cylinder in cross flow of air

300

=N\
700 }: ' I 1‘\}\
600:: | I‘A \
Re = 2lg , Eﬁ“ \ V/
% |\
s < \
= 7000 \
Z400 MT’ 900 \
7_0_1,30() \ “J/
300 tlﬂﬁ 00| 0
200 ﬁ\ﬁ\ / —
\\guf“ g
100 1:!"0'({0’0/
%O 40° 80°  120° 160°

¢ from stagnation point



For flow over a cylinder

518415

Db 0.62 Re!”? Pr!/3 | o
Nug, == = 03 + 5 0 /P77 {1 +( xj{}{}{} } RePr > 0.2

The fluid properties are evaluated at the film temperature 7, = %(Tx + 1)

For flow over a sphere
1/4

hiD

iy T J»:-c
Nug,, = 7— =2 + [0.4 Re'* + 0.06 Re**] Pr?* (‘f)
' k I

3.5 = Re = 80.000 and 0.7 = Pr = 380

The fluid properties are evaluated at the free-stream temperature T,
except for g, which is evaluated at the surface temperature T..

~hD

Nllﬂ.] = — CRe™Pr" RN = 1 Constants C and m are

k 3 given in the table.

The relations for cylinders above are for single cylinders or
cylinders oriented such that the flow over them is not affected by

: 4
the presence of others. They are applicable to smooth surfaces. |




Empirical correlations for the average Nusselt number for forced convection
over circular and noncircular cylinders in cross flow (from Zukauskas, 1972

and Jakob, 1949)

Cross-section

of the cylinder Fluid Range of Re Nusselt number
Circle 0.4-4 Nu = 0.989Re0-330 pPri3
N [ q 4-40 Nu = 0.911Re%38> pri/3
D | fauid | 40-4000 Nu = 0.683Re0466 Pri3
94191 4000-40,000 | Nu = 0.193ReP51¢ prls
SN 40,000-400,000 | Nu = 0.027Re®&0> Prl3
Square Gas 5000-100,000 Nu = 0.102Re®%¢75 Pri/3
T
!
Square Gas 5000-100,000 Nu = 0.246Re588 prls3
(tilted b
45°)
Hexagon Gas 5000-100,000 Nu = 0.153Re0638 pPri3
|
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Empirical correlations for the average Nusselt number for forced convection
over circular and noncircular cylinders in cross flow (from Zukauskas, 1972

and Jakob, 1949)

Hexagon —T Gas 5000-19,500 Nu = 0.160Re%528 prl’3
(tilted b 19,500-100,000 | Nu = 0.0385Re® 782 Pri/3
45°)

Vertical I | Gas 4000-15,000 Nu = 0.228Re" 73! pPrls3
plate D

Ellipse Gas | 2500-15000 | Nu = 0.248Re%612 Prl~

)
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Example

A stainless steel ball (p = 5055 kg/m3, ¢, = 480 J/Kg.°C) of diameter D=15 cm
Is removed from the oven at a uniform temperature of 350°C. The ball is
then subjected to the flow of air at 1 atm pressure and 30°C with a velocity
of 6 m/s. The surface temperature of the ball eventually drops to 250°C.
Determine the average convection heat transfer coefficient during this
process and estimate how long this procces has taken.

Ailr
V=6ms
» = 30°C
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GENERAL CONSIDERATIONS
FOR PIPE FLOW

Liquid or gas flow through pipes or ducts is commonly
used in practice in heating and cooling applications.
The fluid is forced to flow by a fan or pump through a
conduit that is sufficiently long to accomplish the
desired heat transfer.

Transition from laminar to turbulent flow depends on
the Reynolds number as well as the degree of
disturbance of the flow by surface roughness, pipe
vibrations, and the fluctuations in the flow.

The flow in a pipe is laminar for Re < 2300, fully
turbulent for Re > 10,000, and transitional in between.

P ]VMQD _ Vm-'gD
M v

Re =

E quiq = mc, T, = J ¢, I(r)om :’ pc,T(ru(r)VdA,
Ja,

pom _
o T

' "R

‘ c,T(r)ém c,I(rpu(r)2mrdr

] )

Jm Al
}r}}! - L - 1"; _RE . - ]"_r R._'
Hic P P “za'l.-'g( i )¢ p Cavg J0

"R

2

—* | min

(a) Actual

m

(b) Idealized

Actual and idealized
temperature profiles for flow
In a tube (the rate at which
energy is transported with
the fluid is the same for
both cases).

T(ru(r) rdr 52



The fluid properties in internal flow are usually evaluated at the bulk
mean fluid temperature, which is the arithmetic average of the mean
temperatures at the inlet and the exit: T, = (T, ;+ T, .)/2

Thermal Entrance Region

Thermal entrance region: The region of flow over which the thermal boundary
layer develops and reaches the tube center.

Thermal entry length: The length of this region.

Thermally developing flow: Flow in the thermal entrance region. This is the region
where the temperature profile develops.
Thermally fully developed region: The region beyond the thermal entrance region
in which the dimensionless temperature profile remains unchanged.

Fully developed flow: The region in which the flow is both hydrodynamically and
thermally developed.

The
development of
the thermal
boundary layer
in a tube.

_ Thermal

s

— Temperature profile

/ boundary layer

- X

Thermal

entrance region

- Thermally

fully developed region



Hydrodynamically fully developed:

du(r, x)

—  u=ur)

ox
Thermally fully developed:

9 T(x)— T(r, x) — 0
ax | T(x) — T, (x) |

‘f:?_s - ‘f‘-r.x'(- T_s o Tm) - ﬂ

h i

ar

Variation of the friction
factor and the convection
heat transfer coefficient
in the flow direction for
flow in a tube (Pr>1).

I
k(aT1or)|,— & | |
I

ar

X J—
r=RK T‘S ?_l’.i'f

In the thermally fully developed region of a
tube, the local convection coefficient is
constant (does not vary with x).

Therefore, both the friction (which is related
to wall shear stress) and convection
coefficients remain constant in the fully
developed region of a tube.

The pressure drop and heat flux are higher in
the entrance regions of a tube, and the effect
of the entrance region is always to increase
the average friction factor and heat transfer
coefficient for the entire tube.

|
| |

\Entrance Fully
| region

LI'C Ve It ‘+|‘M:L|

— T.
region

.

Fully developed
 flow

|
Y

\
- Thermal boundary layer

~Velocity boundary layer
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Entry L' laminar =~ 0.05Re D L;_,‘ turbulent 1.359D RE]M
LengthS L laminar 0.05Re PrD = Pr L.".'. laminar 15 =

i, turbulent

~ 10D

“i. turbulent

The Nusselt numbers and thus h values are much higher in the entrance region.

The Nusselt number reaches a constant value at a distance of less than 10
diameters, and thus the flow can be assumed to be fully developed for x > 10D.

The Nusselt numbers for 800 | I
the uniform surface
temperature and uniform 700 © i
Surface heat ﬂUX Nu_l._ T{Tj_z constant)
600 Nu, . (g, = constant) N

conditions are identical
in the fully developed 500

R g

regions, and nearly ;
identical in the entrance = 400 -
regions. 3 ~ Re=2 X 105
300 1 =
Variation of local Nusselt 200 105 -
number along a tube in 6 X 104
turbulent flow for both 100 3 X 104 .
uniform surface | | | | | — 0% - | |

temperature and uniform 0 2 4 6 0 12 14 16 18 20
surface heat flux. D

o0



Entry Lengths

L' laminar ~ 0.05Re D

L-‘_ laminar ~ 0.05Re PrD =Pr!
— 1/4

Lf.r. turbulent [.359D Re

L

o ,[J = I{}I)

i, turbulent “i. turbulent

Variation of local Nusselt
number along a tube in
turbulent flow for both
uniform surface
temperature and uniform
surface heat flux.

“h, laminar

800
700 —
Nu_l._ T{Tj_z constant)
600 Nu, . (g, = constant) N
5 500 L D 4‘ -
Z i
g 400
=) Re =2 X 105
“ 300 F — -
200 103 .
6 X 104
100 3 X 104 .
104
] ] ] | | ] ] | ]

0 2 4 6

o0

10 12 |4 16 18
x/D

20



GENERAL THERMAL ANALYSIS

Rate of heat transfer
Q =mcl,—T) (W)

Surface heat flux
g, = h, (T, — T,) (W/I‘l‘lj)

h, the local heat transfer coefficient

Energy balance:
0= Jff('p( r,-T)
The heat transfer to a fluid flowing in a

tube is equal to the increase in the
energy of the fluid.

The thermal conditions at the surface
can be approximated to be

constant surface temperature (T,= const)
constant surface heat flux (g, = const)

The constant surface temperature
condition is realized when a phase
change process such as boiling or
condensation occurs at the outer surface
of a tube.

The constant surface heat flux condition
IS realized when the tube is subjected to
radiation or electric resistance heating
uniformly from all directions.

We may have either T, = constant or
g, = constant at the surface of a tube,
but not both.
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Constant Surface Heat Flux (g, = constant)

Rate of heat transfer: .
] T 4 8
0 = q;A, = mc,(T, — T) (W) Entrance ,  Fully developed [

region region

Mean fluid temperature
at the tube exit:

r =1 4+ &%
e = 1i T Fff{‘:,}

Surface temperature:

g, =hT,—T,) — r—g+%

ne

g, = constant L

Variation of the tube A A

surface and the mean fluid @
T.

temperatures along the
tube for the case of
constant surface heat flux. ti

+
|
|
N



dl, qg.p Y T T VL
m Al = constant 50 =hT,~T,)dA

me,dT,, = q(pdx) ——

m dx mec, {
T’” I— —I T.'r.' u dTm
dr,, dI, T [~
dx — dx n}cme I‘ I‘ mc, (T, +dT,)
I I
y (T, — T\ 0T, o7 o T
2 (= =0 — 1 (-;—ﬁJZG L1/
ox \7T, — T, I,—T,\ ox ax
oT _ dT, dx
ax  dx Energy interactions for a
differential control volume
oT dT, dT, q.p in a tube.
= = — ——— = constant
0X dx dx  mc,
Circular tube:
_ . T(r) T(r)
or _dl, _dln __ 24 _ constant ” (
dx  dx  dx  pV,.C,R o L Loy 4| Lt Lo y 4

The shape of the temperature profile remains + + +,+ + + +  +

unchanged in the fully developed region of a g,
tube subjected to constant surface heat flux. — ~«



Constant Surface Temperature (T, = constant)
Rate of heat transfer to or from a fluid flowing in a tube
Q = hAAT,,, = hA(T, = T, (W)

Two suitable ways of expressing AT,
« arithmetic mean temperature difference
« logarithmic mean temperature difference

Arithmetic mean temperature difference

AT; + AT, (I, —T) + (T, — T,
Q‘Tm-'g = "'iTmn - 9] - 7 - T.‘s' 9 §

s sk’

Bulk mean fluid temperature: T, = (T, + T.)/2

By using arithmetic mean temperature difference, we assume that the mean
fluid temperature varies linearly along the tube, which is hardly ever the case
when T, = constant.

This simple approximation often gives acceptable results, but not always.
Therefore, we need a better way to evaluate AT,
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me,dT,, = NI, — T,

)dA T4

TS = constant I

dA, = pdx dT, = —d(T,—T,) g =
AT, — T,) hp

= ——dx
I, — 1, me,

Integrating from x = 0 (tube inlet,
T,= T)tox=L (tubeexit, T,,=T,)
T,—T.  hA,

I,—T. g, 0 L+_.§

& i

T,=T,— (T, — T) exp(—hA,/nc,) % 93

N

(T

m

approaches T, asymptotically)

In

5 Q — h{Ts _ Tm}dA "= constant
r{j The variation of the mean fluid
In 0 %1 _T,+dl, temperature along the tube for the
) | | case of constant temperature.
nc,T, = = ic, T, +dT,) P
| | . .
L T Energy interactions for

¥

a differential control
dx volume in a tube.
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O = hAAT, o _ T, - T, AT, - AT, 'r?]ngr:thmlc
" In[(T, — TOAT, — T)] In(AT./AT) temperature
_ difference
NTU: Number of transfer units. A
measure of the effectiveness of the
heat transfer systems.
For NTU =5, T, = T, and the limit for T. =100°C

heat transfer is reached. /

A small value of NTU indicates more
opportunities for heat transfer.

AT,, Is an exact representation of the
average temperature difference

-2
=
o
Y
~

between the fluid and the surface. \ A h
When AT, differs from AT, by no more 3
than 40 percent, the error in using the NTU = hA / mic T ,°C
arithmetic mean temperature i . :
difference is less than 1 percent. 0.01 20.8
0.05 23.9
An NTU greater than 5 indicates that 0.10 27.6
the fluid flowing in a tube will reach the o0 0
surface temperature at the exit 5.00 99.5

regardless of the inlet temperature. 10.00 100.0



LAMINAR FLOW IN TUBES
me, Ty —me, T, o g+ Qr—QHdr:O
m = puA, = pu(2wrdr)

Tx+dx o Tx ] Qr+dr o Qr

POU ™" T T 2arrdx dr

aT 1 80

U= —
X Y00 ATF I
Gi dp(.pufd.r a

G . »
0 _a (—kZm‘dxﬁ) - —zrkdr%(;=£)

ar  or ar dr\  ar
a = kipc,

dT _ad rﬂ

“ox ~ rar\” or
The rate of net energy transfer to the The differential volume element
control volume by mass flow is equal used in the derivation of energy
to the net rate of heat conduction in balance relation.

the radial direction. 63



Constant Surface Heat Flux

oT _ dl, dI, 24,

= = = constant

ax  dx dx PVavgCpR

(1 - 5) = ()

N,

r=4 (2o )y e
= }{R I 4R: 'l" 2

Applying the boundary conditions
oT/ox = 0 atr = 0 (because of
symmetry)and T=T,atr =R

— (j.S'R 3 P f 4
F=1== [4 R2 45:4)
[19:R

Tm - T.s' o ﬂ k

g, = W(T,— T,

i

Circular tube, laminar (g, = constant):

hD |
Nu =——=4.36
}!{
Therefore, for fully developed laminar flow in
a circular tube subjected to constant surface
heat flux, the Nusselt number is a constant.

There is no dependence on the Reynolds or
the Prandtl numbers.

64



Constant Surface Temperature

. hD
Circular tube, laminar (T, = constant): Nu = P 3.66
!
The thermal conductivity k for use in the Nu relations should be evaluated
at the bulk mean fluid temperature.

For laminar flow, the effect of surface roughness on the friction factor and
the heat transfer coefficient is negligible.

Trf‘*‘“”““"“ Laminar Flow in Noncircular
— o ] Tubes
f=Re u(r) Nusselt number relations are given in
"""""""""""" D - 77 7 the table for fully developed laminar
Nu = 3.66 J flow in tubes of various cross sections.
The Reynolds and Nusselt numbers
Fully developed for flow in these tubes are based on
laminar flow the hydraulic diameter D, = 4A./p,
In laminar flow in a tube with constant Once the Nusselt number is available
surface temperature, both the friction the convection heat transfer coefficient

factor and the heat transfer coefficient s determined from h = kNu/D,.
remain constant in the fully developed

. 65
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Nusselt number and friction factor for fully developed laminar flow in tubes of
various cross sections (D, = 4A_/p, Re = V,.D,/v, and Nu = hD, /k)

alb Nusselt Number
Tube Geometry or 6° T, = Const. g. = Const.
Circle — 3.66 4.36
I
)
Rectangle alb
1 2.98 3.61
2 3.39 4.12
f 3 3.96 4.79
i 4 4.44 5.33
|q_”__| 6 5.14 6.05
8 5.60 6.49
o 7.54 8.24
Ellipse alb
1 3.66 4.36
2 3.74 4.56
4 3.79 4.88
g 8 3.72 5.09
16 3.65 5.18
Isosceles Triangle f
10° 1.61 2.45
30° 2.26 2.91
A 60° 2.47 3.11
P‘ 90° 2.34 2.98
L~ \ 120° 2.00 2.68




Developing Laminar Flow in the Entrance Region

For a circular tube of length L subjected to constant surface temperature,
the average Nusselt number for the thermal entrance region:

0.065 (D/L) Re Pr
| + 0.04[(D/L) Re Pr]*”

The average Nusselt number is larger at the entrance region, and it
approaches asymptotically to the fully developed value of 3.66 as L — .

Entrv region, laminar: Nu = 3.66 +

When the difference between the surface and the fluid temperatures is large,
it may be necessary to account for the variation of viscosity with temperature:

Re Pr D\ /3 i, 0.14 All properties are evaluated at the bulk
Nu = 1. 6(—) ( })

2 m mean fluid temperature, except for p., which
5

Is evaluated at the surface temperature.

The average Nusselt number for the thermal entrance region of
flow between isothermal parallel plates of length L is

0.03 (D, /L) Re Pr
| + 0.016[(D,/L) Re Pr]*?

Re = 2800 67

Entry region, laminar: Nu = 7.54 +




TURBULENT FLOW IN TUBES

Smooth tubes: £=1(0.790 In Re — 1.64)~2 )00 < Re <5 X 10°
Nu = 0.125 f RePr!/3 Chilton—Colburn First Petukhov equation
analogy

f=0.184 Re 02

0.7 < Pr= 160

Colburn
Re > 10,000

equation

Nu = 0.023 Re"8 Pr!?

Nu = 0.023 Re"® Pr” pittus—Boelter equation
n = 0.4 tor heating and 0.3 for cooling

When the variation in properties is large due to a large temperature difference

0.14
— 00 08p.13( M 0.7 = Pr = 17.600
Nu = 0.027 Re™hr (M) (Re = 10,000 )

All properties are evaluated at T, except p, which is evaluated at T..
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. Second

B (f/8) Re Pr 0.5 = Pr = 2000
Nu = 27(f13)05 (PP [10° = Re = 5 x 10 Petukhov
.07 + 12.7(f18)°5 (P — 1)\ e < ) equation
Nu = (f7/8)(Re — 1000) Pr {-"nj = Pr = 2000 | Gnielinski
|+ 127( f18)°5 (P23 — 1) \3 X 10* <Re <5 X 109 relation
Liquid metals, T, = constant: Nu = 4.8 + 0.0156 Re®® Pro*3
Liquid metals, ¢, = constant: Nu = 6.3 + 0.0167 Re®® Pro®3
(0.004 < Pr < 0.01) 10* < Re < 10°

In turbulent flow, wall roughness increases the heat transfer coefficient h
by a factor of 2 or more. The convection heat transfer coefficient for rough
tubes can be calculated approximately from Gnielinski relation or Chilton—
Colburn analogy by using the friction factor determined from the Moody
chart or the Colebrook equation.

The relations above are not very sensitive to the thermal conditions at the

tube surfaces and can be used for both T, = constant and g, = constant. 6



Equivalent roughness values for
new commercial pipes®

Roughness, ¢

Material ft mm

Glass, plastic O (smooth)
Concrete 0.003-0.03 0.9-9
Wood stave  0.0016 0.5
Rubber,

smoothed 0.000033 0.01
Copper or

brass tubing 0.000005 0.0015
Cast iron 0.00085 0.26
Galvanized

iron 0.0005 0.15
Wrought iron 0.00015 0.046
Stainless steel 0.000007 0.002
Commercial

steel 0.00015 0.045

*The uncertainty in these values can be as much
as +60 percent.



Developing Turbulent Flow in the Entrance Region

The entry lengths for turbulent flow are typically short, often just 10 tube
diameters long, and thus the Nusselt number determined for fully developed
turbulent flow can be used approximately for the entire tube.

This simple approach gives reasonable results for pressure drop and heat
transfer for long tubes and conservative results for short ones.

Correlations for the friction and heat transfer coefficients for the entrance regions
are available in the literature for better accuracy.

Turbulent Flow in Noncircular Tubes

Pressure drop and heat transfer
characteristics of turbulent flow in tubes are
dominated by the very thin viscous sublayer
next to the wall surface, and the shape of the
core region is not of much significance.

The turbulent flow relations given above for
circular tubes can also be used for
noncircular tubes with reasonable accuracy
by replacing the diameter D in the evaluation
of the Reynolds number by the hydraulic
diameter D, = 4A_/p.

Ve ()

Core region

L

r
—
]

Viscous sublayer

In turbulent flow, the velocity
profile is nearly a straight line in
the core region, and any
significant velocity gradients
occur in the viscous sublayer. 71



Flow through Tube Annulus
4A,  4m(D; — D)4
P wD,+D)

The hydraulic

i

‘Dh =

For laminar flow, the convection coefficients for the

iInner and the outer surfaces are determined from
_ '!‘Tf' Dh hﬁ Dh
ok k

Nu, and Nu, =

For fully developed turbulent flow, h; and h, are
approximately equal to each other, and the
tube annulus can be treated as a noncircular
duct with a hydraulic diameter of D,, = D, — D..

The Nusselt number can be determined from a
suitable turbulent flow relation such as the
Gnielinski equation. To improve the accuracy,
Nusselt number can be multiplied by the
following correction factors when one of the
tube walls is adiabatic and heat transfer is
through the other wall:

i diameter of annulus

Ok
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Tube surfaces are often
roughened, corrugated, or
finned in order to enhance
convection heat transfer.

Nusselt number for fully developed
laminar flow in an annulus with
one surface isothermal and the
other adiabatic (Kays and Perkins,
1972)

D;/D, Nu; Nu,

0 - 3.66
0.05 1746  4.06
0.10 11.56 4.11
0.25 7.37 423
0.50 5.74  4.43
1.00 486  4.86

HR —{.16
F;, = 0.86 [Df) (outer wall adiabatic)
B D..‘ —{.16 . . .
F,=0.86 [ J (inner wall adiabatic)
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Heat Transfer Enhancement

Tubes with rough surfaces have much higher heat transfer
coefficients than tubes with smooth surfaces.

Heat transfer in turbulent flow in a tube has been increased by as
much as 400 percent by roughening the surface. Roughening the
surface, of course, also increases the friction factor and thus the
power requirement for the pump or the fan.

The convection heat transfer
coefficient can also be increased by

inducing pulsating flow by pulse

generators, by inducing swirl by .
Inserting a twisted tape into the tube, )
or by indUCing Secondary flows by (a) Finned surface Fin

coiling the tube.

Tube surfaces are often
roughened, corrugated, or
) : >
finned in order to enhance o Roughness

convection heat transfer, (7 Roughened surface




Exercice:

Parallel flow of atmospheric air over a flat plate of
length L = 3 m 1s disrupted by an array of stationary
rods placed in the tlow path over the plate.

{ :: O"’;*Of\\off’\_'

Laboratory measurements of the local convection coef-
ficient at the surtace of the plate are made for a pre-
scribed value of V and T, > T,.. The results are
correlated by an expression of the form A, = 0.7 +
13.6x — 3.4x°, where h_ has units of W/m® - K and x is
in meters. Evaluate the average convection coefficient
h, for the entire plate and the ratio h,/h, at the trailing
edge.
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Exercice:

A 6-cm-diameter shaft rotates at 3000 rpm in a 20-cm-
long bearing with a uniform clearance of 0.2 mm. At steady op-
erating conditions, both the bearing and the shaft in the vicinity
of the oil gap are at 50°C, and the viscosity and thermal con-
ductivity of lubricating oil are 0.05 N - s/m* and 0.17 W/m - K.
By simplifying and solving the continuity, momentum, and
energy equations, determine (a) the maximum temperature of
oil. (b) the rates of heat transfer to the bearing and the shaft,
and (c) the mechanical power wasted by the viscous dissipation
in the oil.

3000 rpm

A e R

20 cm
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Quiz

A S-cm-diameter shaft rotates at 4500 rpm in a 15-cm-
long, 8-cm-outer-diameter cast iron bearing (kK = 70 W/m - K)
with a uniform clearance of 0.6 mm filled with lubricating oil
(= 0.03 N - s/m’ and kK = 0.14 W/m - K). The bearing is
cooled externally by a liquid, and its outer surface is main-
tained at 40°C. Disregarding heat conduction through the shaft
and assuming one-dimensional heat transfer, determine (a) the
rate of heat transfer to the coolant, (b) the surface temperature
of the shaft, and (c) the mechanical power wasted by the vis-
cous dissipation in oil.

4500 rpm 4
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NATURAL CONVECTION
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EQUATION OF MOTION AND THE GRASHOF NUMBER

N
\

_ \ Temperature

wﬁlk}\ /
T,
4 Velocity
1 T profile
u=>0 T . =10

Boundary
layer

T flund

‘/' at T,

Stationary

The thickness of the boundary layer
Increases in the flow direction.

Unlike forced convection, the fluid velocity
IS zero at the outer edge of the velocity
boundary layer as well as at the surface of
the plate.

At the surface, the fluid temperature is
equal to the plate temperature, and
gradually decreases to the temperature of
the surrounding fluid at a distance
sufficiently far from the surface.

In the case of cold surfaces, the shape of
the velocity and temperature profiles
remains the same but their direction is
reversed.
Typical velocity and temperature profiles for
natural convection flow over a hot vertical

plate at temperature T, inserted in a fluid at
temperature T_. 8



The Grashof Number

The governing equations of natural convection and the boundary conditions
can be nondimensionalized by dividing all dependent and independent
variables by suitable constant quantities:

* = L = l B — ﬂ It — E ] TFii _ T — Y_.x.
xX* = L yE = L s =y vt =y anc =T =T,
Substituting them into the momentum equation and simplifying give
L ou* L ou [”BfT — T, }L?} e
u* + v* = _ + i
X ay* p° Re; Re; 9y*”

gB(T, — T)L; Grashof number: Represents the natural
p? convection effects in momentum equation

G [y =

g = gravitational acceleration, m/s?

3 = coefficient of volume expansion, 1/K (8 = 1/T for ideal gases)
T, = temperature of the surface, °C
1., = temperature of the fluid sufficiently far from the surface, °C

L. = characteristic length of the geometry, m

v = kinematic viscosity of the fluid, m*/s
79



Y

Y

B W W

Y

The Grashof number provides the main criterion in determining whether the
fluid flow is laminar or turbulent in natural convection.

For vertical plates, the critical Grashof number is observed to be about 10°.

Hot
surface
Friction
force

1

Warm
fluid

I

Buoyancy

The Grashof number Gris a
measure of the relative
magnitudes of the buoyancy
force and the opposing viscous
force acting on the fluid.

force

Cold
fluid

When a surface is subjected to external
flow, the problem involves both
natural and forced convection.

The relative importance of each mode of
heat transfer is determined by the
value of the coefficient Gr/Re?:

 Natural convection effects are
negligible if Gr/Re? << 1.

 Free convection dominates and the
forced convection effects are
negligible if Gr/Re? >> 1.

Both effects are significant and must
be considered if Gr/Re? ~ 1.
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