CLASS
Third Units
PURE SUBSTANCE

- **Pure substance**: A substance that has a fixed chemical composition throughout.
- **Air** is a mixture of several gases, but it is considered to be a pure substance.

Nitrogen and gaseous air are pure substances.

A mixture of liquid and gaseous water is a pure substance, but a mixture of liquid and gaseous air is not.
PHASES OF A PURE SUBSTANCE

The molecules in a solid are kept at their positions by the large springlike inter-molecular forces.

In a solid, the attractive and repulsive forces between the molecules tend to maintain them at relatively constant distances from each other.

The arrangement of atoms in different phases: (a) molecules are at relatively fixed positions in a solid, (b) groups of molecules move about each other in the liquid phase, and (c) molecules move about at random in the gas phase.
PHASE-CHANGE PROCESSES OF PURE SUBSTANCES

- **Compressed liquid (subcooled liquid):** A substance that it is *not about to vaporize.*
- **Saturated liquid:** A liquid that is *about to vaporize.*

At 1 atm and 20°C, water exists in the liquid phase (*compressed liquid*).

At 1 atm pressure and 100°C, water exists as a liquid that is ready to vaporize (*saturated liquid*).
- **Saturated vapor**: A vapor that is *about to condense*.
- **Saturated liquid–vapor mixture**: The state at which the *liquid and vapor phases coexist* in equilibrium.
- **Superheated vapor**: A vapor that is *not about to condense* (i.e., not a saturated vapor).

As more heat is transferred, part of the saturated liquid vaporizes (**saturated liquid–vapor mixture**).

At 1 atm pressure, the temperature remains constant at 100°C until the last drop of liquid is vaporized (**saturated vapor**).

As more heat is transferred, the temperature of the vapor starts to rise (**superheated vapor**).
If the entire process between state 1 and 5 described in the figure is reversed by cooling the water while maintaining the pressure at the same value, the water will go back to state 1, retracing the same path, and in so doing, the amount of heat released will exactly match the amount of heat added during the heating process.

T-v diagram for the heating process of water at constant pressure.
Saturation Temperature and Saturation Pressure

- The temperature at which water starts boiling depends on the pressure; therefore, if the pressure is fixed, so is the boiling temperature.
- Water boils at 100°C at 1 atm pressure.
- **Saturation temperature** T_{sat}: The temperature at which a pure substance changes phase at a given pressure.
- **Saturation pressure** P_{sat}: The pressure at which a pure substance changes phase at a given temperature.

The liquid–vapor saturation curve of a pure substance (numerical values are for water).
• **Latent heat**: The amount of energy absorbed or released during a phase-change process.

• **Latent heat of fusion**: The amount of energy absorbed during melting. It is equivalent to the amount of energy released during freezing.

• **Latent heat of vaporization**: The amount of energy absorbed during vaporization and it is equivalent to the energy released during condensation.

• The magnitudes of the latent heats depend on the temperature or pressure at which the phase change occurs.

• At 1 atm pressure, the latent heat of fusion of water is 333.7 kJ/kg and the latent heat of vaporization is 2256.5 kJ/kg.

• The atmospheric pressure, and thus the boiling temperature of water, decreases with elevation.

<table>
<thead>
<tr>
<th>Elevation, m</th>
<th>Atmospheric pressure, kPa</th>
<th>Boiling temperature, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>101.33</td>
<td>100.0</td>
</tr>
<tr>
<td>1,000</td>
<td>89.55</td>
<td>96.5</td>
</tr>
<tr>
<td>2,000</td>
<td>79.50</td>
<td>93.3</td>
</tr>
<tr>
<td>5,000</td>
<td>54.05</td>
<td>83.3</td>
</tr>
<tr>
<td>10,000</td>
<td>26.50</td>
<td>66.3</td>
</tr>
<tr>
<td>20,000</td>
<td>5.53</td>
<td>34.7</td>
</tr>
</tbody>
</table>
The temperature of liquid nitrogen exposed to the atmosphere remains constant at -196°C, and thus it maintains the test chamber at -196°C.

The variation of the temperature of fruits and vegetables with pressure during vacuum cooling from 25°C to 0°C.

In 1775, ice was made by evacuating the air space in a water tank.

Some Consequences of T_{sat} and P_{sat} Dependence
PROPERTY DIAGRAMS FOR PHASE-CHANGE PROCESSES

- The variations of properties during phase-change processes are best studied and understood with the help of property diagrams such as the T-v, P-v, and P-T diagrams for pure substances.

T-v diagram of constant-pressure phase-change processes of a pure substance at various pressures (numerical values are for water).
- saturated liquid line
- saturated vapor line
- compressed liquid region
- superheated vapor region
- saturated liquid–vapor mixture region (wet region)

At supercritical pressures \((P > P_{cr})\), there is no distinct phase-change (boiling) process.

Critical point: The point at which the saturated liquid and saturated vapor states are identical.
P-v diagram of a pure substance.

The pressure in a piston–cylinder device can be reduced by reducing the weight of the piston.
Extending the Diagrams to Include the Solid Phase

For water, $T_{tp} = 0.01^\circ C$
$P_{tp} = 0.6117$ kPa

At triple-point pressure and temperature, a substance exists in three phases in equilibrium.

\(P-v \) diagram of a substance that contracts on freezing.

\(P-v \) diagram of a substance that expands on freezing (such as water).
Sublimation: Passing from the solid phase directly into the vapor phase.

At low pressures (below the triple-point value), solids evaporate without melting first (sublimation).

P-T diagram of pure substances.
The $P-v-T$ surfaces present a great deal of information at once, but in a thermodynamic analysis it is more convenient to work with two-dimensional diagrams, such as the $P-v$ and $T-v$ diagrams.
PROPERTY TABLES

• For most substances, the relationships among thermodynamic properties are too complex to be expressed by simple equations.
• Therefore, properties are frequently presented in the form of tables.
• Some thermodynamic properties can be measured easily, but others cannot and are calculated by using the relations between them and measurable properties.
• The results of these measurements and calculations are presented in tables in a convenient format.

Enthalpy—A Combination Property

\[h = u + P \nu \] (kJ/kg)

\[H = U + P \nu \] (kJ)

The combination \(u + P \nu \) is frequently encountered in the analysis of control volumes.

The product \(pressure \times volume \) has energy units.
Saturated Liquid and Saturated Vapor States

- **Table A–4**: Saturation properties of water under temperature.
- **Table A–5**: Saturation properties of water under pressure.

A partial list of Table A–4.

<table>
<thead>
<tr>
<th>Temp. press.</th>
<th>Specific volume m³/kg</th>
<th>Specific volume m³/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>℃</td>
<td>Sat. press.</td>
<td>Sat. liquid</td>
</tr>
<tr>
<td></td>
<td>°C</td>
<td>kPa</td>
</tr>
<tr>
<td>85</td>
<td>57.868</td>
<td>0.001032</td>
</tr>
<tr>
<td>90</td>
<td>70.183</td>
<td>0.001036</td>
</tr>
<tr>
<td>95</td>
<td>84.609</td>
<td>0.001040</td>
</tr>
</tbody>
</table>

νₙ = specific volume of saturated liquid
νₛ = specific volume of saturated vapor
νᵣ = difference between νₛ and νₙ (that is, νᵣ = νₛ − νₙ)

Enthalpy of vaporization, hₔ (Latent heat of vaporization): The amount of energy needed to vaporize a unit mass of saturated liquid at a given temperature or pressure.
Examples:
Saturated liquid and saturated vapor states of water on T-ν and P-ν diagrams.
Saturated Liquid–Vapor Mixture

Quality, \(x \): The ratio of the mass of vapor to the total mass of the mixture. Quality is between 0 and 1 → 0: sat. liquid, 1: sat. vapor.

The properties of the saturated liquid are the same whether it exists alone or in a mixture with saturated vapor.

\[
x = \frac{m_{\text{vapor}}}{m_{\text{total}}} \quad m_{\text{total}} = m_{\text{liquid}} + m_{\text{vapor}} = m_f + m_g
\]

Temperature and pressure are dependent properties for a mixture.

A two-phase system can be treated as a homogeneous mixture for convenience.

The relative amounts of liquid and vapor phases in a saturated mixture are specified by the **quality** \(x \).
Quality is related to the horizontal distances on P-v and T-v diagrams.

The v value of a saturated liquid–vapor mixture lies between the v_f and v_g values at the specified T or P.

\[
\nu_{\text{avg}} = \nu_f + x\nu_{fg} \quad (m^3/\text{kg})
\]

\[
x = \frac{m_g}{m_t}
\]

\[
x = \frac{\nu_{\text{avg}} - \nu_f}{\nu_{fg}}
\]

\[
u_{avg} = u_f + xu_{fg} \quad (\text{kJ/kg})
\]

\[
h_{avg} = h_f + xh_{fg} \quad (\text{kJ/kg})
\]

\[
y \rightarrow v, u, \text{ or } h.
\]

\[
y_{avg} = y_f + xy_{fg}
\]

\[
y_f \leq y_{avg} \leq y_g
\]
Examples: Saturated liquid-vapor mixture states on T-ν and P-ν diagrams.
In the region to the right of the saturated vapor line and at temperatures above the critical point temperature, a substance exists as superheated vapor. In this region, temperature and pressure are independent properties.

Superheated Vapor

Compared to saturated vapor, superheated vapor is characterized by

- Lower pressures \(P < P_{\text{sat}} \) at a given \(T \)
- Higher temperatures \(T > T_{\text{sat}} \) at a given \(P \)
- Higher specific volumes \(\nu > \nu_{g} \) at a given \(P \) or \(T \)
- Higher internal energies \(u > u_{g} \) at a given \(P \) or \(T \)
- Higher enthalpies \(h > h_{g} \) at a given \(P \) or \(T \)

<table>
<thead>
<tr>
<th>(T, ^\circ \text{C})</th>
<th>(\nu)</th>
<th>(u)</th>
<th>(h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P = 0.1 \text{ MPa}) (99.61(^\circ)C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sat.</td>
<td>1.6941</td>
<td>2505.6</td>
<td>2675.0</td>
</tr>
<tr>
<td>100</td>
<td>1.6959</td>
<td>2506.2</td>
<td>2675.8</td>
</tr>
<tr>
<td>150</td>
<td>1.9367</td>
<td>2582.9</td>
<td>2776.6</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>1300</td>
<td>7.2605</td>
<td>4687.2</td>
<td>5413.3</td>
</tr>
<tr>
<td>(P = 0.5 \text{ MPa}) (151.83(^\circ)C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sat.</td>
<td>0.37483</td>
<td>2560.7</td>
<td>2748.1</td>
</tr>
<tr>
<td>200</td>
<td>0.42503</td>
<td>2643.3</td>
<td>2855.8</td>
</tr>
<tr>
<td>250</td>
<td>0.47443</td>
<td>2723.8</td>
<td>2961.0</td>
</tr>
</tbody>
</table>

At a specified \(P \), superheated vapor exists at a higher \(h \) than the saturated vapor.

A partial listing of Table A–6.
The compressed liquid properties depend on temperature much more strongly than they do on pressure.

\[y \equiv y_f @ T \quad y \rightarrow \nu, u, \text{or} \ h \]

A more accurate relation for \(h \)

\[h \equiv h_f @ T + \nu_f @ T (P - P_{\text{sat}} @ T) \]

Given: \(P \) and \(T \)

\[\nu \equiv \nu_f @ T \]

\[u \equiv u_f @ T \]

\[h \equiv h_f @ T \]

A compressed liquid may be approximated as a saturated liquid at the given temperature.

Compressed Liquid

Compressed liquid is characterized by

- Higher pressures (\(P > P_{\text{sat}} \) at a given \(T \))
- Lower temperatures (\(T < T_{\text{sat}} \) at a given \(P \))
- Lower specific volumes (\(\nu < \nu_f \) at a given \(P \) or \(T \))
- Lower internal energies (\(u < u_f \) at a given \(P \) or \(T \))
- Lower enthalpies (\(h < h_f \) at a given \(P \) or \(T \))
Reference State and Reference Values

- The values of u, h, and s cannot be measured directly, and they are calculated from measurable properties using the relations between properties.
- However, those relations give the changes in properties, not the values of properties at specified states.
- Therefore, we need to choose a convenient reference state and assign a value of zero for a convenient property or properties at that state.
- The reference state for water is 0.01°C and for R-134a is -40°C in tables.
- Some properties may have negative values as a result of the reference state chosen.
- Sometimes different tables list different values for some properties at the same state as a result of using a different reference state.
- However, in thermodynamics we are concerned with the changes in properties, and the reference state chosen is of no consequence in calculations.

Saturated water—Temperature table

<table>
<thead>
<tr>
<th>Temp., press., P_{sat} kPa</th>
<th>Sat. liquid, v_f m3/kg</th>
<th>Sat. vapor, v_g m3/kg</th>
<th>Sat. liquid, u_f kJ/kg</th>
<th>Sat. Evap., u_{fg} kJ/kg</th>
<th>Sat. vapor, u_g kJ/kg</th>
<th>Sat. liquid, h_f kJ/kg</th>
<th>Sat. Evap., h_{fg} kJ/kg</th>
<th>Sat. vapor, h_g kJ/kg</th>
<th>Sat. liquid, s_f kJ/kg · K</th>
<th>Sat. Evap., s_{fg} kJ/kg · K</th>
<th>Sat. vapor, s_g kJ/kg · K</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.6117</td>
<td>0.001000</td>
<td>0.000</td>
<td>2374.9</td>
<td>2374.9</td>
<td>0.001</td>
<td>2500.9</td>
<td>2500.9</td>
<td>0.0000</td>
<td>9.1556</td>
<td>9.1556</td>
</tr>
<tr>
<td>5</td>
<td>0.8725</td>
<td>0.001000</td>
<td>21.019</td>
<td>2360.8</td>
<td>2381.8</td>
<td>21.020</td>
<td>2489.1</td>
<td>2510.1</td>
<td>0.0763</td>
<td>8.9487</td>
<td>9.0249</td>
</tr>
</tbody>
</table>

Saturated refrigerant-134a—Temperature table

<table>
<thead>
<tr>
<th>Temp., press., P_{sat} kPa</th>
<th>Sat. liquid, v_f m3/kg</th>
<th>Sat. vapor, v_g m3/kg</th>
<th>Sat. liquid, u_f kJ/kg</th>
<th>Sat. Evap., u_{fg} kJ/kg</th>
<th>Sat. vapor, u_g kJ/kg</th>
<th>Sat. liquid, h_f kJ/kg</th>
<th>Sat. Evap., h_{fg} kJ/kg</th>
<th>Sat. vapor, h_g kJ/kg</th>
<th>Sat. liquid, s_f kJ/kg · K</th>
<th>Sat. Evap., s_{fg} kJ/kg · K</th>
<th>Sat. vapor, s_g kJ/kg · K</th>
</tr>
</thead>
<tbody>
<tr>
<td>-40</td>
<td>51.25</td>
<td>0.0007054</td>
<td>-0.036</td>
<td>207.40</td>
<td>207.37</td>
<td>0.000</td>
<td>225.86</td>
<td>225.86</td>
<td>0.000000</td>
<td>0.96866</td>
<td>0.96866</td>
</tr>
</tbody>
</table>
Exercises:

1. What is the difference between saturated liquid and compressed liquid?

2. What is the difference between saturated vapor and superheated vapor?

3. Why are the temperature and pressure dependent properties in the saturated mixture region.

4. What is the physical significance of h_{fg}? Can it be obtained from a knowledge of h_f and h_g? How?

5. Is it true that it takes more energy to vaporize 1 kg of saturated liquid water at 100°C than it would at 120°C?
Quiz

• Which is the energy quantity necessary to vaporize 1 Kg of saturated liquid water at 75 Kpa.
Exercises

Complete this table for H₂O:

<table>
<thead>
<tr>
<th>T, °C</th>
<th>P, kPa</th>
<th>ν, m³/kg</th>
<th>Phase description</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>200</td>
<td>4.16</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>400</td>
<td></td>
<td>Saturated vapor</td>
</tr>
<tr>
<td>110</td>
<td>600</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Complete this table for H₂O:

<table>
<thead>
<tr>
<th>T, °F</th>
<th>P, psia</th>
<th>u, Btu/lbm</th>
<th>Phase description</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>40</td>
<td>782</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>120</td>
<td></td>
<td>Saturated liquid</td>
</tr>
<tr>
<td>400</td>
<td>400</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
THE IDEAL-GAS EQUATION OF STATE

• **Equation of state**: Any equation that relates the pressure, temperature, and specific volume of a substance.

• The simplest and best-known equation of state for substances in the gas phase is the ideal-gas equation of state. This equation predicts the $P-v-T$ behavior of a gas quite accurately within some properly selected region.

$$P = R \left(\frac{T}{\nu} \right)$$

$P\nu = RT$

$$R = \frac{R_u}{M} \quad (\text{kJ/kg} \cdot \text{K or kPa} \cdot \text{m}^3/\text{kg} \cdot \text{K})$$

R: gas constant
M: molar mass (kg/kmol)
R_u: universal gas constant

$$R_u = \begin{cases} 8.31447 \text{ kJ/kmol} \cdot \text{K} \\ 8.31447 \text{ kPa} \cdot \text{m}^3/\text{kmol} \cdot \text{K} \\ 0.0831447 \text{ bar} \cdot \text{m}^3/\text{kmol} \cdot \text{K} \\ 1.98588 \text{ Btu/lbmol} \cdot \text{R} \\ 10.7316 \text{ psia} \cdot \text{ft}^3/\text{lbfmol} \cdot \text{R} \\ 1545.37 \text{ ft} \cdot \text{lbf/lb mol} \cdot \text{R} \end{cases}$$

Different substances have different gas constants.
Mass = Molar mass × Mole number

\[m = MN \quad (\text{kg}) \]

\[\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \]

Ideal gas equation at two states for a fixed mass

\[\nabla = m \nu \longrightarrow P \nabla = mRT \]

\[mR = (MN)R = NR_u \longrightarrow P \nabla = NR_u T \]

\[\nabla = N \bar{\nu} \longrightarrow P \bar{\nabla} = R_u T \]

Various expressions of ideal gas equation

Real gases behave as an ideal gas at low densities (i.e., low pressure, high temperature).

The ideal-gas relation often is not applicable to real gases; thus, care should be exercised when using it.

Properties per unit mole are denoted with a bar on the top.
Is Water Vapor an Ideal Gas?

- At pressures below 10 kPa, water vapor can be treated as an ideal gas, regardless of its temperature, with negligible error (less than 0.1 percent).
- At higher pressures, however, the ideal gas assumption yields unacceptable errors, particularly in the vicinity of the critical point and the saturated vapor line.
- In air-conditioning applications, the water vapor in the air can be treated as an ideal gas. Why?
- In steam power plant applications, however, the pressures involved are usually very high; therefore, ideal-gas relations should not be used.

Percentage of error ($\left[\frac{|v_{\text{table}} - v_{\text{ideal}}|}{v_{\text{table}}}\right] \times 100$) involved in assuming steam to be an ideal gas, and the region where steam can be treated as an ideal gas with less than 1 percent error.
COMPRESSIBILITY FACTOR—A MEASURE OF DEVIATION FROM IDEAL-GAS BEHAVIOR

Compressibility factor Z
A factor that accounts for the deviation of real gases from ideal-gas behavior at a given temperature and pressure.

$$Pv = ZRT$$

$$Z = \frac{Pv}{RT}$$

The farther away Z is from unity, the more the gas deviates from ideal-gas behavior.

Gases behave as an ideal gas at low densities (i.e., low pressure, high temperature).

Question: What is the criteria for low pressure and high temperature?

Answer: The pressure or temperature of a gas is high or low relative to its critical temperature or pressure.

At very low pressures, all gases approach ideal-gas behavior (regardless of their temperature).

The compressibility factor is unity for ideal gases.