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HEAT TRANSFER FROM FINNED SURFACES

When Ts and T are fixed, two ways to increase the rate of heat transfer are

• To increase the convection heat transfer coefficient h. This may require the 

installation of a pump or fan, or replacing the existing one with a larger one, but 

this approach may or may not be practical. Besides, it may not be adequate.

• To increase the surface area As by attaching to the surface extended surfaces

called fins made of highly conductive materials such as aluminum.

Newton’s law of cooling: The rate of heat transfer from 

a surface to the surrounding medium

The thin plate fins of a car radiator greatly 

increase the rate of heat transfer to the air.

Some innovative fin designs.
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FIGURE 3–34
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FIGURE 3–34



5

Performance Characteristics

In this section we provide the performance

characteristics:

 Temperature distribution,

 Rate of heat transfer,

 Fin efficiency

For convecting, radiating, and convecting-radiating fins.

Configurations considered include longitudinal fins,

radial fins, and spines.
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Fin Equation

Differential equation

Temperature excess

if
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The general solution of the differential equation

Boundary conditions at the fin base and the fin tip.
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Constant base temperature and convecting 

tip
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Constant base temperature and insulated tip
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Fins are not likely to be so long that their temperature

approaches the surrounding temperature at the tip. A more

realistic assumption is for heat transfer from the fin tip to be

negligible since the surface area of the fin tip is usually a

negligible fraction of the total fin area.
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Convection (or Combined 

Convection and Radiation)

from Fin Tip

A practical way of accounting for the 

heat loss from the fin tip is to replace 

the fin length L in the relation for the 

insulated tip case by a corrected

length defined as

Corrected fin length Lc is defined such

that heat transfer from a fin of length Lc

with insulated tip is equal to heat transfer 

from the actual fin of length L with 

convection at the fin tip.

t the thickness of the rectangular fins

D the diameter of the cylindrical fins
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Constant base and tip temperatures
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Infinitely high fin with constant base 

temperature

c
fin

b

bc

mx

b

hA

kP

hAQ

hPkAQ

e

























finfin

fin

0(L) (L :conditionsboundary 

max,

.

.

)

Revisar 

eficiencia!



14

Conduction and convection in a straight fin of uniform

cross-sectional area. (a) Rectangular fin. (b) Pin fin. (c)

Four common tip boundary conditions. (d) Temperature

distribution for the infinite fin (x →∞)



Temperature distribution, and loss 

heat of uniform sectional fins
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Fin Efficiency

Fins enhance heat 

transfer from

a surface by 

enhancing surface 

area.

Ideal and actual

temperature 

distribution 

along a fin.



17

Zero thermal resistance or infinite 

thermal conductivity (Tfin = Tb)
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• Fins with triangular and parabolic profiles contain less material 

and are more efficient than the ones with rectangular profiles.

• The fin efficiency decreases with increasing fin length. Why?

• How to choose fin length? Increasing the length of the fin 

beyond a certain value cannot be justified unless the added 

benefits outweigh the added cost. 

• Fin lengths that cause the fin efficiency to drop below 60 percent

usually cannot be justified economically. 

• The efficiency of most fins used in practice is above 90 percent.
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Fin 

Effectiveness

The 

effectiveness 

of a fin

• The thermal conductivity k of the fin 

should be as high as possible. Use 

aluminum, copper, iron.

• The ratio of the perimeter to the cross-

sectional area of the fin p/Ac should be 

as high as possible. Use slender pin fins.

• Low convection heat transfer coefficient

h. Place fins on gas (air) side.

• The use of fins are recommended when 

f ≥ 2. (Incropera)
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Efficiency of straight fins of rectangular, triangular, and parabolic profiles.
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Efficiency of annular fins of constant thickness t.
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Various surface areas associated 

with a rectangular surface with 

three fins.

Overall effectiveness for a finned surface

The overall fin effectiveness depends

on the fin density (number of fins per 

unit length) as well as the 

effectiveness of the individual fins. 

The overall effectiveness is a better 

measure of the performance of a 

finned surface than the effectiveness 

of the individual fins.

The total rate of heat transfer from a 

finned surface
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Proper Length of a Fin

Because of the gradual temperature drop 

along the fin, the region near the fin tip makes 

little or no contribution to heat transfer.

mL = 5  an infinitely long fin

mL = 1 offer a good compromise 

between heat transfer

performance and the fin size.
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• Heat sinks: Specially 

designed finned surfaces

which are commonly used in 

the cooling of electronic 

equipment, and involve one-

of-a-kind complex

geometries.

• The heat transfer 

performance of heat sinks is 

usually expressed in terms of 

their thermal resistances R.

• A small value of thermal 

resistance indicates a small 

temperature drop across the 

heat sink, and thus a high fin 

efficiency.
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Fin Design
The measures ηf and εf probably attract the interest of

designers not because their absolute values guide the

designs, but because they are useful in characterizing fins

with more complex shapes. In such cases the solutions are

often so complex that ηf and εf plots serve as labor saving

graphical solutions.

The design of a fin thus becomes an open-ended matter of

optimizing, subject to many factors. Some of the factors

that have to be considered include:
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Fin Design

 The weight of material added by the fin. This might be a

cost factor or it might be an important consideration in this

own right.

 The possible dependence of h on (T – T), flow velocity

past the fin, or other influences

 The influence of the fin (or fins) on the heat transfer

coefficient, h, as the fluid moves around it (or them)

 The geometric configuration of the channel that the fin

lies in

 The cost and complexity of manufacturing fins

 The pressure drop introduced by the fins
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Exercise, Cengel
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Example, Cengel
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Example, Cengel
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Quiz:
The extent to which the tip condition affects the thermal

performance of a fin depends on the fin geometry and thermal

conductivity, as well as the convection coefficient. Consider an

alloyed aluminun (k=180 W/ m.K) rectangular fin whose base

temperature is Tb= 100 °C. The fin is exposed to a fluid of

temperature T∞= 25°C, and the uniform convection coefficient of h=

100 W/m2.K, may be assumed for the fin surface (tip condition).

* For a fin of length L= 10 mm, w= 5 mm, thickness t = 1 mm,

determine the efficiency and effectiveness.
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HEAT TRANSFER IN COMMON CONFIGURATIONS
So far, we have considered heat transfer in simple geometries such as large

plane walls, long cylinders, and spheres. 

This is because heat transfer in such geometries can be approximated as one-

dimensional.

But many problems encountered in practice are two- or three-dimensional and 

involve rather complicated geometries for which no simple solutions are 

available.

An important class of heat transfer problems for which simple solutions are 

obtained encompasses those involving two surfaces maintained at constant

temperatures T1 and T2. 

The steady rate of heat transfer between these two surfaces is expressed as

S: conduction shape factor

k: the thermal conductivity of the medium between the surfaces

The conduction shape factor depends on the geometry of the system only.

Conduction shape factors are applicable only when heat transfer between 

the two surfaces is by conduction.

Relationship between the conduction 

shape factor and the thermal resistance
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Example, Cengel
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Numerical Methods



Limitations Better modeling



Flexibility Complications

Computers and numerical methods are

ideally suited for such calculations, and a

wide range of related problems can be

solved by minor modifications in the code or

input variables. Today it is almost

unthinkable to perform any significant

optimization studies in engineering without

the power and flexibility of computers and

numerical methods



Human Nature



Finite  difference formulation of differential 

equations 



Finite  difference formulation of differential 

equations 

The wall is subdivided into M sections

of equal thickness x = L/M in the x-

direction, separated by planes passing

through M+1 points 0, 1, 2, ..., m-1, m,

m+1, ..., M called nodes or nodal points.

The x-coordinate of any point m is

simply xm = mx, and the temperature at

the point is simply T(xm) = Tm.



Finite  difference formulation of differential 

equations 

The first derivate of temperature dT/dx at the midpoints m-½ and m+½

of the sections surrounding the node m can be expressed as

Noting that the second derivate is simply the derivate of the first

derivate, the second derivate of temperature at node m can be

expressed as



Finite  difference formulation of differential 

equations 

The governing equation for steady one-

dimensional heat transfer in a plane wall

with heat generation and constant

thermal conductivity, can be expressed in

the finite difference form as



Finite  difference formulation of differential 

equations 
The finite difference formulation for

steady two-dimensional heat

conduction in a region plane wall with

heat generation and constant thermal

conductivity, can be expressed in

rectangular coordinates as



One-dimensional steady heat conduction

Consider steady one-dimensional heat

transfer in a plane wall of thickness L

with heat generation g(x) and k cte. The

wall is subdivided into M equal regions

of the thickness x = L/M in the x-

direction, and the divisions between the

regions are selected as the nodes.

Therefore, we have M+1 nodes labeled

0, 1, 2, ..., m-1, m, m+1, ..., M. The x-

coordinate of any node m is simply xm =

mx, and the temperature at that point

is T(xm) = Tm.



One-dimensional steady heat conduction



One-dimensional steady heat conduction



Boundary conditions

Boundary conditions most commonly

encountered in practice are the

specified temperature, specified heat

flux, convection, and radiation

boundary conditions



Boundary conditions

1. Specified Heat Flux Boundary

Condition

Special case: Insulated Boundary

2. Convection Boundary Condition



Boundary conditions

3. Radiation Boundary Condition

4. Combined Convection and Radiation

Boundary Condition

5. Combined Convection, Radiation and

Heat Flux Boundary Condition



Boundary conditions

6. Interface Boundary Condition



Boundary conditions

Treating Insulated Boundary Nodes

as Interior Nodes: The Mirror Image

Concept



EXAMPLE



EXAMPLE



EXAMPLE



QUIZ



Two-Dimensional Steady Heat Conduction

A logical numbering scheme for two-

dimensional problems is the double

subscript notation (m,n) where m = 0,

1, 2, ..., M is the node count in the x-

direction and n = 0, 1, 2, ..., N is the

node count in the y-direction. The

coordinates of the node (m,n) are

simply x = mx and y = my, and the

temperature at the node (m,n) is

denoted by Tm,n.



Two-Dimensional Steady Heat Conduction



Boundary nodes

For the heat transfer under steady

conditions, the basic equation to

keep in mind when writing na energy

balance on a volume element is



Example:
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Symmetry sections
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