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HEAT TRANSFER FROM FINNED SURFACES

Q = hA (T — T ) Newton'’s law of cooling: The rate of heat transfer from
conv TSRS =/ a surface to the surrounding medium

When T, and T are fixed, two ways to increase the rate of heat transfer are

« To increase the convection heat transfer coefficient h. This may require the
installation of a pump or fan, or replacing the existing one with a larger one, but
this approach may or may not be practical. Besides, it may not be adequate.

« Toincrease the surface area A, by attaching to the surface extended surfaces
called fins made of highly conductive materials such as aluminum.

Some innovative fin designs.

The thin plate fins of a car radiator greatly
increase the rate of heat transfer to the air.
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Performance Characteristics

In this section we provide the performance
characteristics:

1 Temperature distribution,
1 Rate of heat transfer,
O Fin efficiency

For convecting, radiating, and convecting-radiating fins.
Configurations considered include longitudinal fins,
radial fins, and spines.



Fin Equation

dx = r+dsx + d':fuum-
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~ Specified
temperature /
(a) Specified temperature
(D) Negligible heat loss
(¢) Convection
(d) Convection and radiation

Boundary conditions at the fin base and the fin tip.

The general solution of the differential equation
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Straight fins of uniform cross section. (@) Rectangular fin. (b) Pin fin.

Para evaluar las constantes C; y C, de la ecuacién 3.66, es necesario especificar
condiciones de frontera apropiadas. Una condicidn se especifica en términos de la tem-
peratura en la base de la aleta (v = 0)

0)=T1,—T.,=8,



Constant base temperature and convecting
tip
boundary conditions hg(L) = —-kd@/dx|

@ coshm(L - x)+(h/mk)sinhm(L — x)
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Constant base temperature and insulated tip

Fins are not likely to be so long that their temperature
approaches the surrounding temperature at the tip. A more
realistic assumption is for heat transfer from the fin tip to be
negligible since the surface area of the fin tip is usually a
negligible fraction of the total fin area.

boundary conditions d6/dx| | =0

@ coshm(L - x)
o, coshmL

Qsn =hPKA Gy tanhmL Qg max = A5 0,

Qﬁn _ tanhmL

Tlin =
o mL
10 Qﬁn,max




Convection (or Combined

Convection and Radiation)

from Fin Tip

A practical way of accounting for the
heat loss from the fin tip is to replace
the fin length L in the relation for the
insulated tip case by a corrected
length defined as

L{. = L + 1,—}
L =L+ 1
¢, rectangular [in )
D
L. cylindrical fin — L+ 4

t the thickness of the rectangular fins
D the diameter of the cylindrical fins

Qﬁn
‘ Convection
L
|
- L |
|
(a) Actual fin with :
convection at the tip |
A
X | ‘e
O | p
fin f |
| |
‘ | | Insulated
|
| "
|
- L >
i

(h) Equivalent fin with insulated tip

Corrected fin length L, is defined such
that heat transfer from a fin of length L,
with insulated tip is equal to heat transfer
from the actual fin of length L with
convection at the fin tip. 11



Constant base and tip temperatures

boundary conditions (L) = 6,

0 (6,/6,)sinhmx +sinhm(L — x)

&, sinhmL

- coshmL — (6, /6,)
= /hPkA 6 —

Qn A0 sinhmL

Qﬁn,max = hAﬁn Hb

Qﬁn

Tiin =

Qﬁn,max
12



Infinitely high fin with constant base
temperature

boundary conditions : (L > «) (L) =0

ﬁ — o MX

‘9b

Q. = +/hPKA 6,

- Revisar
Qﬁn max — hAﬁn gb eficiencia!

kP
Tl fin = E

13



Case Fin tip boundary condition

B{es) = 0
|

A

Infinite fin X — o

b - . _
giL) - -
§J /
_ I 48 ‘
B q _-1' T 0
1 O G o ) [

N

=1L

Adiabatic tip

g(L) =8,
|

c

T =T,

Prescribed tip x=L

termperatura

& (x)

a (L)
Il .—I Gy = Qeonu T
D q_'l_' —:FI —_— ff:c'.l.' . d’ﬂ - 1

i kA, — = hA_8(L)
di lz=L

Conduction and convection in a straight fin of uniform
cross-sectional area. (a) Rectangular fin. (b) Pin fin. (c)
Four common tip boundary conditions. (d) Temperature
distribution for the infinite fin (x — )



Temperature distribution, and loss
heat of uniform sectional fins

Condicion de aleta Distribucion de Transferencia

Caso (x = L) temperaturas 0/0, de calor de la aleta g,

A Transferencia de coshm(L — x) + (himk) senh m(L —x) & senhmL + (himk) cosha
aalor por i cosh mL + (h/mk ) senh mL cosh ml + (himk )scnhﬁy
he(L) = —kdOid],,

(3.70)

B Adiabatica: coshm(L — x)

dOldx| .; = 0 BT M tanh mL
(3.75) (3.6

€ Temperatura (6. /6,) senhmx + senhm(L - x) . (coshmL = 6,/ 6))
establecida: senh mL senh mL
L) = 6

(3.77) (3.78)

D Aleta infinita (L. — =):

L) = 0 e m M
(3.79) (3.
O0=T-T, m* = hP/KA,

0,=&0)=T,-T. M=VhPkAS,
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(a) Surface without fins (k) Surface with a fin

A, =2xwxL+wxt

fin
=2xwxlL

Ql'in. max hx"jlrm (Th — 1)

. 80°C
(a) Ideal (b) Actual

Fin Efficiency

Fins enhance heat
transfer from

a surface by
enhancing surface
area.

Ideal and actual

temperature
distribution
along a fin.

56°C
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: Zero thermal resistance or infinite
) 1 — .I. ] _ . .
Qtin, max = 1A (T — 1) thermal conductivity (T, = T,)

B  fin ~Actual heat transfer rate from the fin
i Ot max [deal heat transfer rate from the fin

if the entire fin were at base temperature

Q fin nlm le max nl'in hAﬁn (Tb o Tw)

Q fin \/F /.’{)/\ A, (Th — T,f) l AA ' l

— c
MNiong fin 3

Ql'in. max [’r"jilln (Tf;r T:x:) L \ h/’] ‘F”L—

o _ \VhpkA, (T, — T.)tanh al _ tanh mL

Ql'in. max N hAl'iﬁ (Th o Tx) mL

nmliuhulic tip
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Efficiency and surface areas of common fin configurations

Straight rectangular fins

m = \/2hikt
L.=L+t/2
qum == EWLC

Straight triangular fins
m = \/2hlkt
Agn = 2wV L% + (1/2)?

Straight parabolic fins

m =\ 2hikt

Agsin = WL[C, + (L/BIn(t/L + C))]
C,= V1 + (tLP

Circular fins of rectangular profile

m =/ 2hikt
fop = Iy + 12
Agp = 27 (rg, — rf)

Pin fins of rectangular profile

m = \V4h/kD
L.= L+ D4
quin == TTDLC

tanhmL,

fin = mL

c

1 H(Z2mL)
i = L 1y(2ml)

2
1+ V(@2mLE+1

Mfin =

Ky(mr) (mre ) — Lime)K (mrs,)

tin = zfgl:fﬁfl:lKll:fﬁfgg} + Kolmry) i (mirs,)

2nim
T oe2 g2
Foe — 1

2

tanhmL,

Hfin = fﬁ.lr_c




Pin fins of triangular profile
g P 1 (I2y (1—x/L)

2 k(2mL)
m = \4hikD =
b i = L 1 (2mL)
f

Pin fins of parabolic profile

m =\ &4h/kD 5 — y=(D/2) (1-x/Ly*
Ti'ulr_3 L , Tifin = e

Afin = E[Cgf:h _E.‘IHQEDC;L-'L + Cg}] 1+ v(EZ2mLi3) + 1 D:l: _r?'_"_‘-

Cs=1 + 2(DLY

_ 742 3\_ ) -
Ca= V1 + (DIL)? J 4‘

Pin fins of parabolic profile

(blunt tip) | » w
m = \/ah/kD _ 3 h{4mLi3) y=(Di2) (1—x/L)"?
i = oL Io(4mL/3)
"qfin 2{ ].6 Lf D 1}
6L }. L
._/“’

* Fins with triangular and parabolic profiles contain less material
and are more efficient than the ones with rectangular profiles.

« The fin efficiency decreases with increasing fin length. Why?

* How to choose fin length? Increasing the length of the fin
beyond a certain value cannot be justified unless the added
benefits outweigh the added cost.

* Fin lengths that cause the fin efficiency to drop below 60 percent
usually cannot be justified economically.

- The efficiency of most fins used in practice is above 90 percent. 19



_ _ Heat transfer rate from Fin
O tin Qin B the fin of base area A, Effectiveness

Epn =

i Q"“ - hA,(T,—T.) Heat transfer rate from
the surface of area A,
Qt‘m o Qi‘m o 1 fin hA fin ( Th - T’f-} o A fin
é__‘ p— —

WS T hA (T, T,  hA,(T,—T,) A, T
| The

O \ hpkA, (T, — T.) kp T, 5"‘“ fin offectiveness

Q no fin - h‘{:\ b { Tf’ o T’f} B \ E Of a fln

Hlu_mg fin
« The thermal conductivity k of the fin A,
should be as high as possible. Use
aluminum, copper, iron.

« The ratio of the perimeter to the cross- Ofin
sectional area of the fin p/A. should be Ty

as high as possible. Use slender pin fins. /Q \ l l )
¢ \

 Low convection heat transfer coefficient
h. Place fins on gas (air) side.

* The use of fins are recommended when Qf-m
& > 2. (Incropera) €fin =

=no fin
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The total rate of heat transfer from a
finned surface

thal, fin = Qunf’n Qfm
= ;IA Tf} - TD&) + nﬁn ;"‘Aﬁn (Tf:r R T:ﬂ)

unfin

= ;I(Aunﬁn + nﬁnAﬁn](Tb — T )

oo

Overall effectiveness for a finned surface

Qllﬂll fin ’mﬂum‘m + T?im fin {Th Tﬁf-}

oo
fin. overs: l[[ ) ‘ —
()[nl il, no fin JIIrJF‘_}'llll.'r fin { TJ’J Tx :l'

The overall fin effectiveness depends
on the fin density (number of fins per
unit length) as well as the
effectiveness of the individual fins.

The overall effectiveness is a better

=wxH

Ano fin

Aunfin =WXH-=3X({IXWw)
f%m=2xin<w+rxu‘

= 2 X L xw (one fin)

measure of the performance (_Df a Various surface areas associated
finned surface than the effectiveness with a rectangular surface with _
of the individual fins. three fins.



Proper Length of aFin| ¢, \/ hpkA, (T, — T..) tanh mL B
: = — = tanh r

T Q]mng fin \ xf!‘." kA . {T;, - Tx}
T, I(x) The variation of heat transfer from
AT = high a fin relative to that from an
AT = lcrw: AT =0 : infinitely long fin
| | :
' I I mL ﬁ = tanh mL
Tw___l _________ | | o long fin
| | | 0.1 0.100
: : IL 0.2 0.197
| | = 0.5 0.462
High | Low | No | ' 1.0 0.762
‘hefﬂt | I he-flt _ I ‘IIE%IT _ I 15 0.905
transfer : transfer : transfer : 20 0.964
T , " j' | 2.5 0.987
b 3.0 0.995
‘ ‘ 4.0 0.999
‘ 5.0 1.000

mL =5 — an infinitely long fin
mL = 1 offer a good compromise
between heat transfer
performance and the fin size.

Because of the gradual temperature drop
along the fin, the region near the fin tip makes
little or no contribution to heat transfer.
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Heat sinks: Specially
designed finned surfaces
which are commonly used in
the cooling of electronic
equipment, and involve one-
of-a-kind complex
geometries.

The heat transfer
performance of heat sinks is
usually expressed in terms of
their thermal resistances R.

A small value of thermal
resistance indicates a small
temperature drop across the
heat sink, and thus a high fin
efficiency.
T,— T,

o T - JIIr‘P‘A‘ﬁn

Nen (T, — T2,)

Combined natural convection and radiation thermal resistance of various
heat sinks used in the cooling of electronic devices between the heat sink and
the surroundings. All fins are made of aluminum 6063T-5, are black anodized,

and are 76 mm (3 in) long.

HS 5030

R = 0.9°C/W (vertical)
R = 1.2°C/W (horizontal)

Dimensions: 76 mm X 105 mm x 44 mm
Surface area: 677 cm?

R = b°C/W

Dimensions: 76 mm > 38 mm x 24 mm
Surface area: 387 cm?2

HS 6071

R = 1.4°C/W (vertical)
R = 1.8°C/W (horizontal)

Dimensions: 76 mm * 92 mm X 26 mm
Surface area: 968 cm?

HS 6105

R = 1.8°C/W (vertical)
R = 2.1°C/W (horizontal)

Dimensions: 7&é mm X 127 mm > 91 mm
Surface area: 677 cm?@

HS 6115 )

R = 1.1°C/W (vertical)
F = 1.3°C/W (horizontal)

Dimensions: 76 mm x 102 mm *x 25 mm
Surface area: 929 cm?




Fin Design

The measures n; and g probably attract the interest of
designers not because their absolute values guide the
designs, but because they are useful in characterizing fins
with more complex shapes. In such cases the solutions are
often so complex that n; and ¢; plots serve as labor saving
graphical solutions.

The design of a fin thus becomes an open-ended matter of
optimizing, subject to many factors. Some of the factors
that have to be considered include:

26



Fin Design

d The weight of material added by the fin. This might be a
cost factor or it might be an important consideration in this
own right.

d The possible dependence of h on (T — T,), flow velocity
past the fin, or other influences

d The influence of the fin (or fins) on the heat transfer
coefficient, h, as the fluid moves around it (or them)

O The geometric configuration of the channel that the fin
lies In
O The cost and complexity of manufacturing fins

U The pressure drop introduced by the fins

27



Exercise, Cengel

3—106 Obtain a relation for the fin efficiency for a fin of con-
stant cross-sectional area A, perimeter p. length L. and thermal
conductivity k exposed to convection to a medium at 7. with a
heat transfer coefficient h. Assume the fins are sufficiently long
50 that the temperature of the fin at the tip 1s nearly T... Take
the temperature of the fin at the base to be T, and neglect heat
transfer from the fin tips. Simplity the relation for (a) a circu-
lar fin of diameter D) and (b) rectangular fins of thickness 1.

h, T..

T ——

p=nD, A.= nD*/4
28



Example, Cengel

J—111E Consider a stainless steel spoon (kK = 8.7
Btw/h - ft - °F) partially immersed in boiling water at 200°F in
a kitchen at 75°F. The handle of the spoon has a cross section
of 0.08 in. X 0.5 in., and extends 7 in. in the air from the free

surface of the water. If the heat transfer coefficient at the ex-
posed surfaces of the spoon handle is 3 Btu/h - ft* - °F, deter-
mine the temperature difference across the exposed surface of

the spoon handle. State your assumptions. Answer: 124.6°F
Spoon

29




Example, Cengel

3—116 A hot surface at 100°C is to be cooled by attach-
ing 3-cm-long, 0.25-cm-diameter aluminum pin fins (K =
237 W/m - °C) to it, with a center-to-center distance of 0.6 cm.
The temperature of the surrounding medium is 30°C, and the
heat transfer coefficient on the surfaces is 35 W/m* - °C.
Determine the rate of heat transfer from the surface for a
1-m > 1-m section of the plate. Also determine the overall

effectiveness of the fins.
*’A“ScmH

0.6
cm

/L 0.25
Cim
AT

30



Quiz:

The extent to which the tip condition affects the thermal
performance of a fin depends on the fin geometry and thermal
conductivity, as well as the convection coefficient. Consider an
alloyed aluminun (k=180 W/ m.K) rectangular fin whose base
temperature is T,= 100 °C. The fin is exposed to a fluid of
temperature T.,= 25°C, and the uniform convection coefficient of h=
100 W/m=2.K, may be assumed for the fin surface (tip condition).

* For a fin of length L= 10 mm, w= 5 mm, thickness t = 1 mm,
determine the efficiency and effectiveness.

31



HEAT TRANSFER IN COMMON CONFIGURATIONS

So far, we have considered heat transfer in simple geometries such as large
plane walls, long cylinders, and spheres.

This is because heat transfer in such geometries can be approximated as one-
dimensional.

But many problems encountered in practice are two- or three-dimensional and
involve rather complicated geometries for which no simple solutions are
available.

An important class of heat transfer problems for which simple solutions are
obtained encompasses those involving two surfaces maintained at constant
temperatures T, and T,.

The steady rate of heat transfer between these two surfaces is expressed as
Q=SKT, —T,)
S: conduction shape factor

k: the thermal conductivity of the medium between the surfaces

The conduction shape factor depends on the geometry of the system only.
Conduction shape factors are applicable only when heat transfer between
the two surfaces is by conduction.

S = 1/kR Relationship between the conduction
- shape factor and the thermal resistance 32



Conduction shape factors 5 for several configurations for use in Q= k5(Ty — T,) to determine the steady rate of heat
transfer through a medium of thermal conductivity k between the surfaces at temperatures 7, and T,

i 1) Isothermal cylinder of length L
buried in a semi-infinite medium
(L==0Dand z = 1.50¥)

2rL

5= 1n {4/ D) ]“
1

i 3) Two parallel isothermal cylinders
placed in an infinite medium
(L==Dy, Iy, z)

(2) Vertical isothermal cylinder of length L
buried in a semi-infinite medium

T.

(iL>>D) _ 2

__2xL PRI ()| R

In(4L/D) R I R SO
(4} A row of equally spaced parallel isothermal
cylinders buried in a semi-infinite medium
(L==I z andw > 1.50)
- T,

2mL

=
ln[% sinh ETHE]

I

i per cylinder)

i 5) Circular isothermal cylinder of length L
in the midplane of an infinite wall

(z =050
_ E?TL B B
~ In(sz/aD) L' p— TD _ :1 o
:'Ta.

s

(6} Circular isothermal eylinder of length L
at the center of a square solid bar of the
same length

_ 2rL
In  LLOSw/IY)

33



i(7) Eccentric circular 1sothermal cylinder
of length L in a eylinder of the same
length (L = D)

2ol
’Lﬁ+£%~k2]

cosh™! . ZDJ Dg

5=

(8} Large plane wall

(9) A long evlindrical layer

- ml
]If'.l lDiu"'DJJ

(107 A square flow passage
(a) For afb = 1.4,

§—___ 2mL
0,93 In (0.948aq/h)

(b Foratb = 1.41,

5= 2ol

(0.T85 In (a/b)

i11) A spherical layer

2nD\D

5= =
DE_D]

(12) Disk buried parallel to
the surface in a semi-infinite
medium (7 == 0}

§=4D

(§=2Dwhenz=10)

34



Example, Cengel
3-122 A 20-m-long and 8-cm-diameter hot water pipe of a
district heating system 1s buried in the soil 80 cm below the
ground surface. The outer surface temperature of the pipe is
60°C. Taking the surface temperature of the earth to be 5°C
and the thermal conductivity of the soil at that location to be

0.9 W/m - °C, determine the rate of heat loss from the pipe.

5°C

sfségﬁ;{f;fj}%  ' i
L ID 3““‘ )

35
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Numerical Methods

Solution:

€ 2 2
I(n=T, + ok (r;—r°)
S dT _ 47rie
Q) =<4 dr = 3
FIGURE 5-1

The analytical solution of a problem
requires solving the governing
differential equation and applying
the boundary conditions.



Limitations

T, h k = constant vl 1o
|
No No
radiation radiation
Long
cylinder
T, h | h, T,
|

h = constant

T.. = constant

FIGURE 5-2

Analytical solution methods are
l[imited to simplified problems
in simple geometries.

Better modeling

An
oval-shaped

body
Simplified Realistic
model model

A sphere

| ¢

Exact (analytical)  Approximate (numerical)

solution of model, solution of model,

but crude solution but accurate solution

of actual problem of actual problem
FIGURE 5-3

The approximate numerical solution
of a real-world problem may be more
accurate than the exact (analytical)
solution of an oversimplified

model of that problem.



Flexibility

Computers and numerical methods are
ideally suited for such calculations, and a
wide range of related problems can be
solved by minor modifications in the code or
input variables. Today it is almost
unthinkable to perform any significant
optimization studies in engineering without
the power and flexibility of computers and
numerical methods

Complications

——

I(r, z)

— T

Analytical solution:
‘I()(A'nr)

B 2 A JI(A'II"())

n=1 n

T(r; :) e T’/.
T() — T

sinh /ln(L —-2)
sinh (;L”L)

where ),”’s are roots of J()(?‘.”l--”) =0

FIGURE 54

Some analytical solutions are very
complex and difficult to use.



Human Nature

FIGURE 5-5
The ready availability of high-powered
computers with sophisticated software

packages has made numerical solution
the norm rather than the exception.




Finite difference formulation of differential

equations

f(x+ Ax)

J(x)

Tangent line

FIGURE 5-6

The derivative of a function at a point
represents the slope of the function

at that point.



Finite difference formulation

eguations

The wall is subdivided into M sections
of equal thickness A4x = L/M in the x-
direction, separated by planes passing
through M+1 points O, 1, 2, ..., m-1, m,
m+1, ..., M called nodes or nodal points.
The x-coordinate of any point m is
simply x,, = mA4x, and the temperature at
the point is simply T(x,,) = T,,.

Plane wall

m+]l e e o o

i

m— 1

of differential

@)
o
3
|

N — —— - ——— —
S ¢-————-
el

FIGURE 5-7

Schematic of the nodes and the nodal
temperatures used in the development
of the finite difference formulation

of heat transfer in a plane wall.



Finite difference formulation of differential
eguations

The first derivate of temperature dT/dx at the midpoints m-% and m+%z
of the sections surrounding the node m can be expressed as

— T.-ri o T.'.‘i | ‘1"[’_1 ﬂ-' T,-,l,' = o T_._u
N Ax ‘ dx|, .1 Ax

Noting that the second derivate is simply the derivate of the first
derivate, the second derivate of temperature at node m can be

expressed as

dTl
dx

fea |

ary  _dr Tpi1r— Ty Ty — Ty
ar| dx |, l dx |, l ) Ay - Ax
dx® |, Ax - Ax

I, —2T, +T,.

Ax?



Finite difference formulation of differential
eguations

Plane wall

Differential equation:

2 -
d Z+ E=0
dx~ k

Valid at every point

The governing equation for steady one-
dimensional heat transfer in a plane wall
with heat generation and constant

therma_ll conduct|V|ty, can be expressed in Finite difference equation:
the finite difference form as :
=20 4T é

m— 1 m m+ 1 v Sy
Ax? k

Valid at discrete points

Ty =2, + Tt &,
S o0, m=1,23,... M1 D S —

Ax’ k - Ax+

FIGURE 5-8

The differential equation 1s valid at
every point of a medium, whereas the
finite difference equation is valid at
discrete points (the nodes) only.



Finite difference formulation of differential

eguations
The finite difference formulation for
steady two-dimensional heat

conduction in a region plane wall with
heat generation and constant thermal
conductivity, can be expressed in

rectangular coordinates as
Tm—l_n o ETH?.J‘I T L 1.n N
Ax?
N Tm..ra—l o ETHLII + Tm.n—l 4 gm.n -0
Ay? k

m,n+ 1
n+ 1 *
Aym—],l’l mn m+1,n
n ry L 4 . 2
Ay
n—-1—— *
m,n— 1
Y Ax|Ax
|
X m—-1 m m+1
FIGURE 5-9

Finite difference mesh for two-
dimensional conduction 1n
rectangular coordinates.




One-dimensional steady heat conduction

Consider steady one-dimensional heat
transfer in a plane wall of thickness L Plane wall /Volume
with heat generation g(x) and k cte. The 9lelﬁenl
wall is subdivided into M equal regions 5 i
of the thickness A4x = L/M in the x- : i ;
direction, and the divisions between the Ocond, tcr WD QP Ocon g
regions are selected as the nodes. A general
Therefore, we have M+1 nodes labeled interior node
0,1, 2, .., m-1, m, m+1, ..., M. The x- e I

i i i = (Oe *—o L ° * *——>
coordinate of any node m is simply Xim 51 2 meilb v x
mAax, and the temperature at that point L
is T(Xy,) = Tpp,- Ax " Ax

:Ax=
FIGURE 5-10

The nodal points and volume
elements for the finite difference
formulation of one-dimensional
conduction in a plane wall.



One-dimensional steady heat conduction

/Volume
Tm—l | k element
I Tm + 1
Linear—-y’ T /’
| m ;\l_
: | : Linear
H—Ax—T—Ar—j
|
| | |
. 2 L 2 . 2
m—1 m m+ 1
kA m— 1 m kATm-f-l_Tm
Ax Ax
A= A
FIGURE 5-11

In finite difference formulation, the
temperature is assumed to vary
linearly between the nodes.

Tr.-: 1 ZTHE L Tm- I FE.-}.‘ 0
Ax? kT

m=1.2.3..... M — 1

Rate of heat Rate of heat Rate of heat Rate of change
conduction conduction generation of the energy
at the left at the right inside the content of
surface surface element the element

AE
. . : element
Quund. left + Qn:{:nml. right + Gn:ln:mn: nt At =0

G-:I-:mn:nl = grrrvclcmcm - gm AL"UL'

T.r.'ra—l o Tm
Ax

Qu:nnd, left — L‘fl

Trrr+| o T.r.'ra
Ax

Qu:u-nd,right = KA



One-dimensional steady heat conduction

QZA.&LI
T —-T, T.-T.
kA—L1—2 — 2
Ax Ax
i L 3 i
| 2 3
- Volume
~ element
of node 2
TI -7, T,-T,
kA = —kA———
Ax

Ax +2,AAx=0
or

T,-2T,+ T, + 8,AAX* [ k=0

(a) Assuming heat transfer to be out of the
volume element at the right surface.

Q‘Z.ﬂuﬂ.]‘:
T -T, T.-T,
kA= —“- “ A ——2
Ax Ax
. ] . 2
1 2 3
- Volume
element
of node 2
P ks B Sk SN
Ar ATAr TEASNS
or

T, -2T,+ T, + g,AAx* k=0

(b) Assuming heat transfer to be into the
volume element at all surfaces.



Boundary conditions

Plane wall
Boundary conditions most commonly
encountered in practice are the 35°C 82°C
specified temperature, specified heat \ /
flux, convection, and radiation
boundary conditions
L
Oe L ® ® >
0 1 2 M
1(0) = T, = Specified value
I(L) = Ty, = Specified value I,=35°C
T, =82°C
] . FIGURE 5-13
Z O + Guement = 0 Finite difference formulation of
all sides specified temperature boundary

conditions on both surfaces
of a plane wall.



Boundary conditions

1. Specified Heat Flux Boundary
Condition

IIIql — 1y .
GgoA + kA Ax + gy(AAX/2) = 0

Special case: Insulated Boundary

T, — T
kA % + 6(AAX/2) = 0

2. Convection Boundary Condition

T|_T;|

AT — T + k
hA(T.. = Ty) + kA ——

Qlcft

+ (AAX/2) = 0

_— Volume element
of node 0

e 4y,

surface

Ax

Oe
0

. @

I 2

— Ax—+— Ax—

Ty,

+ kA —] L +éOA

Qleft surface Ax

—:=0

=Y

FIGURE 5-14
Schematic for the finite difference

formulation of the left boundary
node of a plane wall.



Boundary conditions

3. Radiation Boundary Condition
s
)Ij/r/ﬂi: : 4 4 - I — 1y )
s\g I—.-U'.-'—l[rh,_.rr — Ty) + kA T + f**.[-ll‘i ) =0

2
eoA(T* 14| O 4. Combined Convection and Radiation
= Boundary Condition
“MM
= A
hA(T,~Tp) | - AT P ; 7Y —
0 L hA(T.. — Ty) + ecA(To, — Ty) + kA Ay + go(AAX/2) = 0
¢ 0 1 D e X ;
A7 = Ax—— Ax— T — T
| Reompined AT — Tp) + kA T + g,(AAX2) =0
' 4 4 o . . . .
M =To) + €0AT 4y = T) 5. Combined Convection, Radiation and
+,(ATA.\T +é0A%=O Heat Flux Boundary Condition
FIGURE 5-15
Schematic for the finite difference S R A — TN b orr 4 _
formulation of combined convection goA + hA(T- — To) + e0A(Tsur 0)
and radiation on the left boundary I, — T,
of a plane wall. + kA ——+ FEH{A Ax/2y =10

Ax



Boundary conditions

6. Interface Boundary Condition

T' 1 I T, | ;r.--‘i
Ax

ke i

L -LE..-'I. _,_,,f."jl _"UfEJ L kff B _,_,,f."fl Ax/2y =10

M + II:L_H-LI il 3 -1

Medium A

ky

kA Tm—l _Tm
A

Ax

A.m eB, m|

/

Interface

Medium B

kp

T -T
+ 1
gA—tt—"

Ax

m

- Y

kATm—I_ m+k A m+1" " m
A Ax B Ax

Ax Ax
2

+e¢, A— +e¢, A =(

e 2
A,m 2] B.m

FIGURE 5-16

Schematic for the finite difference
formulation of the interface boundary
condition for two mediums A and B
that are in perfect thermal contact.



Boundary conditions

Treating Insulated Boundary Nodes
as Interior Nodes: The Mirror Image
Concept

Insulated
boundary
node

Insulation

4 & &

01 2

=Y

Mirror

Mirror Equivalent
imagc interior
node

& L 4 @ .

@
2Oy 10 2

=Y

FIGURE 5-17

A node on an insulated boundary
can be treated as an interior node by
replacing the insulation by a mirror.



EXAMPLE

5-7 Consider three consecutive nodesn — 1, n,andn + 1 in
a plane wall. Using the finite difference form of the first deriv-
ative at the midpoints, show that the finite difference form of
the second derivative can be expressed as

Tﬁ'—] o ETn + Tn—]

Ax?




EXAMPLE

5—-16 Consider steady heat conduction in a plane wall whose
left surface (node 0) is maintained at 30°C while the right sur-
face (node 8) is subjected to a heat flux of 800 W/m?. Express
the finite difference formulation of the boundary nodes 0 and 8

30°C

N

No heat generation 200

m~

Ax

oy

— %
o1 2 3 4 5 6 T8

BERRERRR




EXAMPLE

5-24 Consider a large uranium plate of thickness 5 cm and
thermal conductivity k = 28 W/m - °C in which heat is gener-
ated uniformly at a constant rate of ¢ = 6 X 10° W/m". One
side of the plate is insulated while the other side is subjected
to convection to an environment at 30°C with a heat transfer
coefficient of h = 60 W/m? - °C. Considering six equally
spaced nodes with a nodal spacing of 1 cm, (a) obtain the finite
difference formulation of this problem and (/) determine the
nodal temperatures under steady conditions by solving those
equations.

Insulated
R ax b Tz




QUIZ

Consider steady one-dimensional heat conduction in a
plane wall with variable heat generation and variable thermal
conductivity. The nodal network of the medium consists of
nodes 0, 1, and 2 with a uniform nodal spacing of Ax. Using
the energy balance approach, obtain the finite difference for-
mulation of this problem for the case of specified heat flux ¢,
to the wall and convection at the left boundary (node 0) with a
convection coefficient of # and ambient temperature of T... and
radiation at the right boundary (node 2) with an emissivity of &
and surrounding surface temperature of T,

U

- T
{?u .\__L.':IJFF
. 00 gy
Convection k(T) Radiation
A
. ~ | Ax y

-

L
—_—
 —
e —
—




N
n+ 1 :: Ay Node (m, n)

n _AA 5 i

| A)

n—1

Z

| Ax Ax

0 —

01 2 T m T
m-1 m+1

FIGURE 5-23

The nodal network for the finite

difference formulation of two-

dimensional conduction in
rectangular coordinates.

wo-Dimensional Steady Heat Conduction

A logical numbering scheme for two-
dimensional problems is the double
subscript notation (m,n) where m =0,
1, 2, ..., Mis the node count in the x-
direction and n =0, 1, 2, ..., N is the
node count in the y-direction. The
coordinates of the node (m,n) are
simply x = mAx and y = m4y, and the
temperature at the node (m,n) is
denoted by T, ..



Two-Dimensional Steady Heat Conduction

m,n+ 1
@&

n+1

T Volume
Rate of heat conduction Rate of heat Rate of change of A element \ |
N _ Y r B

at the left, top, right, generation inside the energy content |
and bottom surfaces the element of the element | €. n |
._ ; m.—],nl ‘m,n ‘m+l,n.

n 1 T
) + 0 + 0 + 0 + - _ 5"E'u_'lu_'r.'u_'r_l =0 I ﬁ N
U cond, left ¢ cond, top ¢ cond, right annd. bottom (-’l.".l.'mcr.'. - At ot Ay L i
l t m, n— 1
1—1 *

k;ﬁ Tm—],n o Tm.n + kAx Trrr,r.'—l T Tm.rr + ﬁ.j. Tm—l.rr - Trrr,r.' n
Y Ax ' Ay =Y Ax e
y m-—1 m m+ 1
Tm.rr—l _ Tm.n .
+ kAx Ay + én o Ax Ay =0
- X
Tr.r! l.an E’Tn'fi.-'u‘ + T.-.'.'I La T-'?i.-'u‘ o E’?_-'?i..'.' + il'-:-.':..ri + 1 n -.fi;ai'i..u.' -0 FIGURE 5—24

Ax? Ay’ kK The volume element of a general

interior node (m, n) for
Lo tn T Tncva T Toin st ¥ Tnn 0 = 4T T = =0 two-dimensional conduction in
rectangular coordinates.



Boundary nodes

Boundary

V s ~ ,. P

For the heat transfer under steady 0'“1',“6 Zlf’rzmm b}lb.lecl‘u'l
of node Ay 2 to convection

conditions, the basic equation to
keep in mind when writing na energy

Qtop
3
4

balance on a volume element is I
* II ll

I 3 | e

Ay et L—— SE— Qright

l Qbonom

Z Q + &Veiemem = 0 ——Ax
all sides
. ; : : (?2\/2
Qlcft + Qtop + Qrighl 1) Qholmm + k =0
FIGURE 5-25

The finite difference formulation of
a boundary node 1s obtained by
writing an energy balance

on its volume element.



Example:

Consider steady heat transfer in an L-shaped solid body whose cross section is
given in Figure 5-26. Heat transfer in the direction normal to the plane of the
paper is negligible, and thus heat transfer in the body is two-dimensional. The
thermal conductivity of the body is Kk = 15 W/m - °C, and heat Is generated in
the body at a rate of g = 2 x 10° W/m?3. The left surface of the body is insu-
lated, and the bottom surface is maintained at a uniform temperature of 90°C.
The entire top surface is subjected to convection to ambient air at 7, = 25°C
with a convection coefficient of h = 80 W/mZ - °C, and the right surface is sub-
jected to heat flux at a uniform rate of g = 5000 W/m?. The nodal network of
the problem consists of 15 equally spaced nodes with Ax = Ay = 1.2 cm, as
shown in the figure. Five of the nodes are at the bottom surface, and thus their
temperatures are known. Obtain the finite difference equations at the remain-
ing nine nodes and determine the nodal temperatures by solving them.

Convection

t |
Ay [ F-+--
p o4 ]
t |
Ay |-+
b0 |
e AT e ATl AT ol AT o AT



A
04‘

(a) Node 1 (b) Node 2

(8) Node 1. The volume element of this corner node is insulated on the |eft and

subjected to convection at the top and to conduction at the right and bottom
surfaces. An energy balance on this element gives [Fig. 5-27al

Ax AyT,—T, AxTy— Ty AxAy
0+ h S (T—T)+kg —p— +kG =+ &5 5 =
S 12

(b) Node 2. The volume element of this boundary node is subjected to con-
vection at the top and to conduction at the right, bottom, and left surfaces. An
energy balance on this element gives [Fig. 5-275b]

AyT; - T, Ts — T, AyTy,—-T, , ., Ay

2hl 2hl g,l*
T]_(4+TJTE+TE+2T5=_TTW_ k



Mirror

N -
(35) 4 5
- ———— 9 —} —o

|

L

® |0
(a) Node 3 (b) Node 4

() Node 3. The volume element of this corner node is subjected to convection
at the top and right surfaces and to conduction at the bottom and left surfaces.
An energy balance on this element gives [Fig. 5-28al

Ax f'-\) AxTs — T3 Ay T, — Ax Ay
h(2+ (T — Ty + k55 A + k> M th5 5 =
2hi _ 2hl gil*
Ty — (2+£jT3+T,5 -7

(d) Node 4. This node is on the insulated boundary and can be treated as an
interior node by replacing the insulation by a mirror. This puts a reflected image
of node 5 to the left of node 4. Noting that Ax = Ay = [, the general interior
node relation for the steady two-dimensional case (Eq. 5-35) gives [Fig. 5-285]

T5+T|+T5+T]ﬂ_4T4+ k =0

3452
T| _4T4+2T5 = _QO_T
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(@) Node 5 (b) Node 6

(e) Node 5. This is an interior node, and noting that Ax = Ay = /, the finite
difference formulation of this node is obtained directly from Eq. 5-35 to be
[Fig. 5-29al
gsl?
T4+T1+T5+T||_4T5+ k =0
gl
k

TE+T4 4Tq+T5— _90_

(f) Node 6. The volume element of this inner corner node is subjected to con-
vection at the L-shaped exposed surface and to conduction at other surfaces.
An energy balance on this element gives [Fig. 5-29b]

ﬁ}, i ) ﬁ'}' T’Jr - Tﬁ le - TE,
— 4 + k— + kAx ——
h( > (T. =T +k— — 1= kAx 5
Tj - TIS ﬁx Tq' - Tﬁ 31‘11&'&1
+ kAy + k : + g =
KAy Ax k 2 Ay §674
L 2hl 20  3gl”



Schematics for energy balances on the
volume elements of nodes 7 and 9.

(g) Node 7. The volume element of this boundary node is subjected to convec-
tion at the top and to conduction at the right, bottom, and left surfaces. An en-
ergy balance on this element gives [Fig. 5-30al

ﬁ"ﬁ" Tg - T‘I.' T]q - T_."
— T+ k— + '
hAX(T, —T;) + k > Av kAx S
AyTg — Ty . Ay
+ k ) ﬂ._ll’ + g-l.'ﬂu'f? =0

2hl 2hi gl°
T, (4+k)T?+T3— 180 — == T — =3
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13 sl5
Schematics for energy balances on the

volume elements of nodes 7 and 9.

(h) Node 8. This node is identical to Node 7, and the finite difference formu-
lation of this node can be obtained from that of Node 7 by shifting the node
numbers by 1 (i.e., replacing subscript mby m + 1). It gives

2hl 2hl gsl?
T?_(4+T)TE+T‘}: _ISD_TT“_T

(i) Node 9. The volume element of this corner node is subjected to convection
at the top surface, to heat flux at the right surface, and to conduction at the
bottom and left surfaces. An energy balance on this element gives [Fig. 5-30b]

Ax Ay AxTis — Ty AyTy — Ty AxAy
W Te=T) 4 ey kG o=tk ot 855 =0

hi Grl  hi gol 2
—_ + - —_— — — = = .
Is (2 k ) =017 T-—7%

s



Convection

vA ' o
I 2
| R
A? | | Ax=Ay=1
Dl s g 9 9k
* 4 } .‘% 4 I \ 4 T o - PP
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) X
90°C
- Ax - Ax . Ax - Ax - Ax -

This completes the development of finite difference formulation for this prob-
lem. Substituting the given quantities, the system of nine equations for the
determination of nine unknown nodal temperatures becomes

0.064T, + T, + T, = —11.2

T, — 4.128T, + T, + 2T, = —22.4
T, — 2.128Ts + T, = —12.8

T, — 4T, + 2T, = —109.2

T,+ T, — AT + T, = —109.2

T, + 2Ts — 6.128T, + T, = —212.0

T, — 4.128T, + T, = —202.4

T, — 4.128T, + T, = —202.4

Ty — 2.064T, = —105.2 67
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Irregular Boundaries

In problems with simple geometries, we can fill the entire region using simple
volume elements such as strips for a plane wall and rectangular elements for
two-dimensional conduction in a rectangular region. We can also use cylin-
drical or spherical shell elements to cover the cylindrical and spherical bodies
entirely. However, many geometries encountered in practice such as turbine
blades or engine blocks do not have simple shapes, and it is difficult to fill
such geometries having irregular boundaries with simple volume elements.
A practical way of dealing with such geometries is to replace the irregular
geometry by a series of simple volume elements, as shown in Figure 5-31.
This simple approach is often satisfactory for practical purposes, especially
when the nodes are closely spaced near the boundary. More sophisticated ap-
proaches are available for handling irregular boundaries, and they are com-
monly incorporated into the commercial software packages.

/~( Actual boundary
¢ 4 9

/

N

Approximation
I\

N\

AN

FIGURE 5-31

Approximating an irregular

boundary with a rectangular mesh.



Symmetry sections

Analysis The cross section of the chimney is given in Figure 5-32. The most
striking aspect of this problem is the apparent symmetry about the horizontal
and vertical lines passing through the midpoint of the chimney as well as the
diagonal axes, as indicated on the figure. Therefore, we need to consider only
one-eighth of the geometry in the solution whose nodal network consists of nine

equally spaced nodes.

Symmetry lines
(Equivalent to insulation)

h|T.
] ]
1 2
3 4 5
6 « |7 8 9

l
h,T, " Representative

Xy section of chimney



|
! 2 (4| Mirror |
-1 images :
: (a) Node 1 (b) Node 2
(4) 3 : ') FIGURE 5-33
“i“ B 7 . Schematics for energy balances on the
Mirror volume elements of nodes 1 and 2.
image \ -
—_—— 6 ™~ ? Insulation
\ / -
Mirror Mirror )i 14
FIGURE 5-34 .
Converting the boundary ‘:
nodes 3 and 5 on symmetry lines to 6 7
interior nodes by using mirror images. T,

sky

FIGURE 5-35

Schematics for energy balances on the
volume elements of nodes 7 and 9.
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FIGURE 5-34

Converting the boundary

nodes 3 and 5 on symmetry lines to
interior nodes by using mirror images.




/ Insulation

sky

FIGURE 5-35

Schematics for energy balances on the
volume elements of nodes 7 and 9.



Temperature, °C
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FIGURE 5-36

The variation of temperature
in the chimney.



Ejercicio
—55 Hot combustion gases of a furnace are flowing through

5
a concrete chimney (kK = 1.4 W/m - °C) of rectangular cross
section. The flow section of the chimney is 20 cm X< 40 cm,

and the thickness of the wall is 10 cm. The average temperature
of the hot gases in the chimney is T; = 280°C, and the average
convection heat transfer coefficient inside the chimney is h; =
75 W/m? - °C. The chimney is losing heat from its outer surface
to the ambient air at T, = 15°C by convection with a heat
transfer coefficient of h, = 18 W/m?® - °C and to the sky by
radiation. The emissivity of the outer surface of the wall is
g = 0.9, and the effective sky temperature is estimated to be
250 K. Using the finite difference method with Ax = Ay =
10 cm and taking full advantage of symmetry, (a) obtain the
finite difference formulation of this problem for steady two-
dimensional heat transfer, (/) determine the temperatures at the
nodal points of a cross section, and (c¢) evaluate the rate of heat
loss for a 1-m-long section of the chimney.
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