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Objectives

Assess when the spatial variation of temperature Is
negligible, and temperature varies nearly uniformly with time,
making the simplified lumped system analysis applicable

Obtain analytical solutions for transient one-dimensional
conduction problems in rectangular, cylindrical, and spherical
geometries using the method of separation of variables, and
understand why a one-term solution is usually a reasonable
approximation

Solve the transient conduction problem in large mediums
using the similarity variable, and predict the variation of
temperature with time and distance from the exposed surface

Construct solutions for multi-dimensional transient conduction
problems using the product solution approach.



LUMPED SYSTEM ANALYSIS

Interior temperature of some
bodies remains essentially
uniform at all times during a
heat transfer process.

70°C
70°C

70°8

70°C  70°C

The temperature of such
bodies can be taken to be a
function of time only, T(t).

(a) Copper ball

Heat transfer analysis that
utilizes this idealization is
known as lumped system
analysis.

A small copper ball
can be modeled as a
lumped system, but
a roast beef cannot, (») Roast beef
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The temperature of a lumped system
approaches the environment
temperature as time gets larger.

This equation enables us to
determine the temperature
T(t) of a body at time t, or
alternatively, the time t
required for the temperature
to reach a specified value T(t).

The temperature of a body
approaches the ambient
temperature T_ exponentially.

The temperature of the body
changes rapidly at the
beginning, but rather slowly
later on. A large value of b
Indicates that the body
approaches the environment
temperature in a short time



(W) The rate of convection heat
transfer between the body
and its environment at time t

O(t) = hA[T(t) — T,)]

O = mc [Tm — T (kJ) The total amount of heat transfer |
between the body and the surrounding
medium over the time interval t=0tot

O =mc (T, — T) (kJ) The maximum heat transfer between
o c | the body and its surroundings
=0 h [ — @
T,
T T,
T T,

Heat transferto or froma 1; T,
body reaches its T, qa i T.
maximum value when the | \
body reaches the 0 = Oy =mc, (T~ T
environment temperature. max 6



Criteria for Lumped System Analysis

Convection V' Characteristic
L{' o 45 Iength
\ h |
o Conduction v T . L. Biot number
/\,
SOLID Lumped system analysis
P BODY % IS applicable if

¥ 4 \ Bi < 0.1

When Bi < 0.1, the temperatures

t within the body relative to the
surroundings (i.e., T —-T_) remain
Bj = feat convection within 5 percent of each other.

" heat conduction

h AT Convection at the surface of the body
- kIL.AT Conduction within the body

Bi

L.lk Conduction resistance within the body
[/h  Convection resistance at the surface of the body

Bi =



h=15W/m2°C _ _ T, =20°C
Small bodies with

high thermal
conductivities and
low convection
coefficients are
most likely to
satisfy the criterion

Spherical
copper
ball

k=401 W/m-°C

85°C

110°C
130°C

L zD3 for lumped system
L=V_5"" _1p_00om ped sy
‘A, gD* 6 analysis.
. 5 Convectio
Bi = 1Le L 15x0.02 _ 40075 < 0.1 ovection
k 401
h = 2000 W/m2-°C
When the convection coefficient h
_ \%:__ . Boatl Is high and k IS low, large
. \% temperature differences occur

N between the inner and outer
- > o regions of a large solid.
TN < Analogy between heat
A, w transfer to a solid and 3
"‘:_;%__ e passenger traffic to an island.



Example:

The temperature of a gas stream is to be measured by a thermocouple whose
junction can be approximated as a 1-mm-diameter sphere, as shown in Fig.
4-9. The properties of the junction are k = 35 W/m - °C, p = 8500 kg/m?, and
C, = 320 J/kg - °C, and the convection heat transfer coefficient between the
junction and the gas is h = 210 W/m? - °C. Determine how long it will take for
the thermocouple to read 99 percent of the initial temperature difference.

Thermocouple
wire

(Gas
T..h — Junction
D=1mm
I1)

FIGURE 4-9 °



Example:

4-20 Consider a 1000-W iron whose base plate is made of
0.5-cm-thick aluminum alloy 2024-T6 (p = 2770 kg/m’, C, =
875 J/kg - °C, a = 7.3 X 1077 m%s). The base plate has a sur-
face area of 0.03 m”. Initially, the iron is in thermal equilibrium
with the ambient air at 22°C. Taking the heat transfer
coefficient at the surface of the base plate to be 12 W/m? - °C
and assuming 85 percent of the heat generated in the resistance
wires is transferred to the plate, determine how long it will take
for the plate temperature to reach 140°C. Is it realistic to as-
sume the plate temperature to be uniform at all times?

iron
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QuIzZ:

Carbon steel balls (p = 7833 kg/m’, k = 54 W/m - °C,
C, = 0465 kl/kg - °C, and a = 1.474 X 10-° m*/s) 8 mm in
diameter are annealed by heating them first to 900°C in a fur-
nace and then allowing them to cool slowly to 100°C in am-
bient air at 35°C. If the average heat transfer coefficient is
75 W/m? - °C, determine how long the annealing process will
take. If 2500 balls are to be annealed per hour, determine the
total rate of heat transfer from the balls to the ambient air.

Furnace Air, 35°C

Q00°C {/‘" Steel ball 100°C

booo‘
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TRANSIENT HEAT CONDUCTION IN LARGE PLANE
WALLS, LONG CYLINDERS, AND SPHERES WITH
SPATIAL EFFECTS |

T '

“ A Ft=0
We will consider the variation of temperature ‘= :,,\
with time and position in one-dimensional r:r"
problems such as those associated with a large T, S | I
plane wall, a long cylinder, and a sphere. |
0 T
h Tnitially r.
T. Initially T, T,| Iniually T, =T h
h r=1, h h r=4 h |
Transient temperature profiles in a
0, | plane wall exposed to convection
L x 0 | from its surfaces for T,>T_.

| | 'I:x.
h

Schematic of the
| | r, simple geometries in

which heat transfer is
(a) A large plane wall (b) A long cylinder one-dimensional. 12



Nondimensionalized One-Dimensional Transient
Conduction Problem

. 0T 10T
Differential equation: — =——
ax- ol
. Initially T,
; T=T, , | Boundary conditions:
a1(0, 1) dlT(L, 1)
— =0 and —k—; = h| (L, 1) — 1,]
I:]I d.l I’J_r
L x s . .
[nitial condition: [(x,0) =T,
a = klpc,
o, 1) = [Tt 1) — TIT, - T,]
i X = x/L
(a) A large plane wall 12 LE a6 Al 1 f hl
E*—(iz —— and : )Z—H(l,f)
X a Jf dX k
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I(x, 1) — T

X, 7) =

( ) Tx._Tj

_ X

X_L

~ hL

Bi = —

k

v
N

L._

Dimensionless temperature
Dimensionless distance from the center
Dimensionless heat transfer coefficient (Biot number)

Dimensionless time (Fourier number)

(a) Original heat conduction problem:

#T _ 10T
ax2 @ ot
aT(0. t (L. t
( }:0- kd( )
ox _
T:F{X.,L.. f,k, Gl._.h-, T;}

T(x,0) = T,

(b) Nondimensionalized problem:

70 _ 9 o, 0)= 1
aX- aT
0.7 _ 9007

dX | dX

6 = fiX, Bi, 7)

= h[T(L, t) — T.]

Nondimensionalization
reduces the number of
independent variables in one-
dimensional transient
conduction problems from 8 to
3, offering great convenience
in the presentation of results.

= —Bio(1, 7)
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Exact Solution of One-Dimensional
Transient Conduction Problem

TABLE 18-1

Summary of the solutions for one-dimensional transient conduction in a plane wall of
thickness 2L, a cylinder of radius r, and a sphere of radius r, subjected to convention from
all surfaces.”

Geometry Solution A,’s are the roots of
< 4 sin A 2
Plane wall # = 1 o7 cos (Ax/L A, tan A, = Bi
HEZIZAH + sin(2A,,) (Anx /L) 4 "
= 2 Ji (A a2 J, (A
: 0= > —— L ”)2 e Jo (Ar/r,) A, 1) _
Cylinder Ay J5 (A, + I (A) 0 (Ap)
h= 3 4(sin A, —.}\n COS A,) oA Sin (A, x/L) | — A cot A, = Bi
Sphere =1 2A, = sin(2A,) Anx /L
*Here 8 = (T — T)/(T, — T) is the dimensionless temperature, Bi = hL/k or hr, 'k is the Biot number, Fo =7 = =t/ L?

or ar/ r? is the Fourier number and Jy and J; are the Bessel functions of the first kind whose values are gwen in
Table 18-3.
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0, = A, e cos(A, X)
4 sin A,
T 2A, + sin(2A)
A, tan A, = Bi

A,

ForBi=5 X=1.andfr = 0.2:

n A, A, 6,

| [.3138 1.2402 0.22321]
2 4.0336 —0.3442 0.00835
3 6.9096 0.1588 0.00001
+ 9.8928 —0.876 0.00000

The analytical solutions of
transient conduction problems
typically involve infinite series,
and thus the evaluation of an
Infinite number of terms to
determine the temperature at a
specified location and time.

The term 1in the series solution of
transient conduction problems decline
rapidly as n and thus A, increases
because of the exponential decay
function with the exponent —A, 7.
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Approximate Analytical and Graphical Solutions

The terms in the series solutions converge rapidly with increasing time,
and for t > 0.2, keeping the first term and neglecting all the remaining
terms in the series results in an error under 2 percent.

Solution with one-term approximation

| T(x,n—T., 2 ‘ -
Plane wall: HWLI][ = T —T = A]f’ M COoSs ir)‘tl".}”L). T >0.2
L I'ir,t) =71, 2 -
Cvlinder: Oy = —F = . - Aje M7 J(Ayrfr,), 7>0.2
I(r.1) — T, 2_sin(Ar/r,)
Sphere: = — = A e MT ———22  +>().2
Sphere H&ph T —T, A e i, 0
. : - Iy — T, 2
Center of plane wall (x = 0): G0 wall = n—T‘f = Aje M\’
t , Wi T,— T,
. o - Iy — 1, 22
Center of cylinder (r = 0): B, eyl = T T, Aje=M’

: -Tn - T_ 2
Center of sphere (r = 0): By oy = —aZ = AN
~ 0.sh = T T, 1



Note that the case 1/Bi = k/hL = 0 corresponds to h — =, which corre-
sponds to the case of specified surface temperature T,. That is, the case in
which the surfaces of the body are suddenly brought to the temperature T,
at t = 0 and kept at T, at all times can be handled by setting & to infinity

The temperature of the body changes from the initial temperature T; to the
temperature of the surroundings T, at the end of the transient heat conduction
process. Thus, the maximum amount of heat that a body can gain (or lose if
1. = T.) is simply the change in the energy content of the body. That is,

Omax = mCy(T.. — T;) = pVC,(T,. — T})
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TABLE 18-2 TABLE 18-3

Coefficients used in the one-term approximate solution of transient one-
dimensional heat conduction in plane walls, cylinders, and spheres (Bi = hi/k
for a plane wall of thickness 2L, and Bi = fr,/k for a cylinder or sphere of

The zeroth- and first-order Bessel
functions of the first kind

radius r,)
Fiane Wall Cylinder Sphere

Bi A A A A A A,
0.01 0.0998 1.0017  0.1412 1.0025  0.1730 1.0030
0.02  0.1410 1.0033  0.1995 1.0050  0.2445 1.0060
0.04  0.1987 1.0066  0.2814 1.0099  0.3450 1.0120
0.06  0.2425 1.0098  0.3438 1.0148  0.4217 1.0179
0.08 0.2791 1.0130  0.3960 1.0197  0.4860 1.0239
0.1 0.3111 1.0161  0.4417 1.0246  0.5423 1.0298
0.2 0.4328 1.0311 0.6170 1.0483  0.7593 1.0592
0.3 0.5218 1.0450  0.7465 1.0712  0.8208 1.0880
0.4 0.5932 1.0580  0.8516 1.0931 1.0528 1.1164
0.5 0.6533 1.0701 0.2408 1.1143 1.1656 1.1441
0.6 0.7051 1.0814 1.0184 1.1345 1.2644 1.1713
0.7 0.7506 1.0918 1.0873 1.1539  1.3525 1.1978
0.8 0.7910 1.1016 1.1450 1.1724  1.4220 1.2236
0.9 0.8274 1.1107 1.2048  1.1902  1.5044  1.2488
1.0 0.8603 1.1191 1.2568  1.2071 1.5708 1.2732
2.0 1.0769 1.1785 1.5995 1.3384  2.0288 1.4793
3.0 1.1925 1.2102 1.7887 1.4191 2.2889 1.6227
4.0 1.2646 1.2287 1.9081 1.4698  2.4556 1.7202
5.0 1.2138 1.2403 1.9898 16029  2.5704 1.7870
6.0 1.3496 1.2479  2.0430 1.5253  2.6537 1.8338
7.0 1.3766 1.2532  2.0937 1.5411 2.7165 1.8673
8.0 1.3978 1.2570  2.1286 1.5526  2.7654  1.8920
9.0 1.4149 1.2598  2.1566 1.5611 2.8044  1.9106
10.0 1.4289 1.2620  2.1795 1.5677  2.8363 1.9249
20.0 1.4961 1.2699  2.2880 1.5919  2.9857 1.9781
30.0 1.5202 1.2717  2.3261 1.5973  3.0372 1.9898
40.0 1.5325 1.2723  2.34E5 1.5993  3.0632 1.9942
50.0 1.5400 1.2727  2.3572 1.6002  3.0788 1.9962
100.0 1.5552 1.2731  2.3809 1.6015  3.1102 1.9990
w 1.5708 1.2732 24048 16021 3.1416  2.0000

1 Joln) Ji(m)
0.0 1.0000 0.0000
0.1 0.9975 0.0499
0.2 0.9%900 0.0995
0.3 0.9776 0.1483
0.4 0.9604 0.1960
0.5 0.9385 0.2423
0.6 0.9120 0.2867
0.7 0.8812 0.3290
0.8 0.8463 0.2688
0.9 0.8075 0.4059
1.0 0.7652 0.4400
1.1 0.7196 0.4709
1.2 0.6711 0.4983
1.3 0.6201 0.5220
1.4 0.5669 0.5419
1.5 0.5118 0.5579
1.6 0.4554 0.5699
1.7 0.3980 05778
1.8 0.3400 0.5815
1.9 0.2818 0.5812
2.0 0.2239 0.5767
2.1 0.1666 0.5683
2.2 0.1104 0.5560
2.3 0.0555 0.5399
2.4 0.0025 0.5202
2.6 —0.0968 —-0.4708
2.8 —0.1850 —0.4097
3.0 —0.2601 —0.32391
3.2 —-0.3202 —-0.2613
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(a) Midplane temperature
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(b) Temperature distribution
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(b) Temperature distribution (from M. P. Heisler,
“Temperature Charts for Induction and Constant
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(¢) Heat transfer (from H. Grober et al.)
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(b) Temperature distribution (from M. P. Heisler, (c¢) Heat transfer (from H. Griber et al.)
“Temperature Charts for Induction and Constant

Temperature Heating,” Trans. ASME 69, 1947,

T=

L
Bi



The dimensionless temperatures anywhere in a plane wall,
cylinder, and sphere are related to the center temperature by

O all Ax 0yl A1 Oon~ sin(Ay1/r,)
= cos|— |, =Jo| — ). and =
0. wall L / 0o, sph AT,

o

9{}, cyl

h T.#T, h T T T

(a) Finite convection coefficient (b) Infinite convection coefficient

The specified surface temperature corresponds to the case of convection
to an environment at T_ with with a convection coefficient h that is infinite.

h — o
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Onax = me (T, — T;) = pVe (T, — T)) (kJ)

Q Si[] J)ll
Plane wall: 0 ) =170 T The fraction of total
o heat transfer
Cvlinder: i =1 =26, ., LAy QiQnalipiiofa
) 0, cyl o c .
| Drnax/ oy YA specified time t is
| 0 Sin A, — A, cos A, deterrplned using
Sphere: 0 =1 =36 on X the Grober charts.
max/ sph

The use of the Heisler/Griber charts and the one-term solutions already dis-
cussed is limited to the conditions specified at the beginning of this section:
the body is initially at a uniform temperature, the temperature of the medium
surrounding the body and the convection heat transfer coefficient are constant
and uniform, and there is no energy generation in the body.

0
t=0
r: 0 Qmax
—_— h
T,
h - _
Tm B': =... Q _
h_}‘;(;? =Bi’r=. .. Qma.x
(a) Maximum heat transfer (1 — %) (Grober chart)
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(b) Actual heat transfer for time ¢



The physical significance of the Fourier number

The rate at which heat 1s conducted
af  kL* (1/L) AT across L of a body of volume L’
2 pc, L3/t AT ~ The rate at which heat is stored
in a body of volume L’

T

* The Fourier number is a L
measure of heat L | I
conducted through a body :
relative to heat stored. :

e A Iarge value of the Q : Qmmluclccl

Fourier number indicates - -

faster propagation of heat
through a body. Ju

Jpupm—
'f *
- - /
Fourier number at time t - e /

can be viewed as the +
ratio of the rate of heat + ot eonducted
conducted to the rate of Tourier number: 7 = 72 0
heat stored at that time. stored
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Example:

An ordinary egg can be approximated as a 5-cm-diameter sphere (Fig. 4-19).
The egg is initially at a uniform temperature of 5°C and is dropped into boil-
ing water at 95°C. Taking the convection heat transfer coefficient to be

h = 1200 W/m? - °C, determine how long it will take for the center of the egg
to reach 70°C.

h = 1200 W/m2-°C
12=95°C

FIGURE 4-19
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Example:

In a production facility, 3-cm-thick large brass plates
(k=110 W/m - °C, p = 8530 kg/m’, C, = 380 J/kg - °C, and
a = 33.9 % 10-° m?/s) that are initially at a uniform tempera-
ture of 25°C are heated by passing them through an oven main-
tained at 700°C. The plates remain in the oven for a period of
10 min. Taking the convection heat transfer coefficient to be
h = 80 W/m? - °C, determine the surface temperature of the
plates when they come out of the oven.

Furnace, 700°C
—-

3cm

—_— —

X///

Brass plate
25°C
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Example:

A long 20-cm-diameter cylindrical shaft made of stainless steel 304 comes out
of an oven at a uniform temperature of 600°C (Fig. 4-21). The shaft is then al-
lowed to cool slowly in an environment chamber at 200°C with an average heat
transfer coefficient of h = 80 W/m? - °C. Determine the temperature at the cen-
ter of the shaft 45 min after the start of the cooling process. Also, determine
the heat transfer per unit length of the shaft during this time period.

I, =200°C
h =80 W/m?.°C

Stainless steel
shaft

FIGURE 4-21
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TRANSIENT HEAT CONDUCTION IN SEMI-
INFINITE SOLIDS

o0

Plane
surface

Schematic of a semi-infinite body.

Semi-infinite solid: An idealized
body that has a single plane surface
and extends to infinity in all directions.

The earth can be considered to be a
semi-infinite medium in determining

the variation of temperature near its

surface.

A thick wall can be modeled as a
semi-infinite medium if all we are
interested in is the variation of
temperature in the region near one of
the surfaces, and the other surface is
too far to have any impact on the
region of interest during the time of
observation.

For short periods of time, most bodies
can be modeled as semi-infinite
solids since heat does not have
sufficient time to penetrate deep into
the body. 31



Case (A) Case (B) Case (C)

Tix, 0) =T, Tlx, 0) =T, T(x, 0)=T,
o, n =T, —k dTidx|, _,=q’ —k dTldx|,_,=hIT, - T(O, Nl
I — T.. h
gy —> T T
[ = x -
Tix, 1)
T, T.
t J t
T T. & T
X X X

Transient temperature distributions in a semi-infinite solid
for three surfac conditions: constant surface temperature,
constant surface heat flux, and surface convection



Analytical solution for the case of constant temperature T, on the surface

Differential equation:

Boundary conditions:

Initial condition: I(x,0)=T,
o . X a°T
Similarity variable: n=— — =
\ dat x>
d*T dT
> = —2r
dn” dn
I0)=T7T, and T(np—o > =T, o
I — T’i 2 K 2 )
-=——| e "du=erf(n) =1 — erfc(n) T _
T:' o T.'i f\v'f T a_,'ll'z
2 (" _ .
erf(n) =——= | e “du error,
Vo function
I
erfe(n) = 1 — — | &~ “du compleme.ntary
" error function

Vol

100, 1) =T, and

EFT_ 1 aT

al a ot

I(x - >0 =T,

oT

1 oT X
—— and m=—7—
a ot \f’f4n*f
dT om _ X dT

ar
oT

dn ot 2p\/4ar dn
dron 1 dT

dnox \aar @

d (ﬂT) n 1 d’T
dn \ax/) ax 4dat dn?

Transformation of variables
In the derivatives of the
heat conduction equation

by the use of chain rule.

33



Case 1: Specified Surface Temperature, 7. = constant Analytical
solutions for

Tx, t) — T, o d o k(T, —T)  different
= erlc — an [A) = —
I, — T, 2\ ot 9% \/ 7ot boundary

conditions on

Case 2: Specified Surface Heat Flux, ¢s = constant. the surface

1| [4at X | ox
Tx, 1) =T, = E& | —exp |— — xerfc —
(| N7 P\ N

Case 3: Convection on the Surface, ‘fh(r) = h|T_ — T(0,1)].

I(x,n) — T, \ X hx  hat)| X h\ at
= erlc +

— exp + erfc
I.—T, 2Vt koK Vot k

Case 4: Energy Pulse at Surface, ¢, = constant.

X

e, ’
el )
kKN mtla dat 34

Ix, 1) =T, =



1.0 [ [ I

o O
o 0
|
\\
|

T
~

/ . 2 T? i § I
k,,, erf(n) = j e~ du [0
r-} -

Error function erf (7)
[
S

\ /“ erfc(n) .

Error function is a standard =

mathematical function, just like the O,fi[!] .
sine and cosine functions, whose
value varies between 0 and 1.
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The complementary error function

£ erfc (&) £ erfc (&) £ erfc (&) £ erfc (&) £ erfc (&) £ erfc (&)
0.00 1.00000 | 0.38 0.5910 | 0.76 0.2825 | 1.14 0.1069 1.52 0.03159 | 1.90 0.00721
0.02 0.9774 0.40 05716 | 0.78 0.2700 | 1.16 0.10090 | 1.54 0.02941 | 1.92 0.00662
0.04 0.9549 0.42 05525 | 0.80 0.2579 | 1.18 0.09516 | 1.56 0.02737 | 1.94 0.00608
0.06 0.9324 0.44 05338 | 0.82 0.2462 | 1.20 0.08969 | 1.58 0.02545 | 1.96 0.00557
0.08 0.9099 0.46 05153 | 0.84 0.2349 | 1.22 0.08447 | 1.60 0.02365 | 1.98 0.00511
0.10 0.8875 0.48 04973 | 0.86 0.2239 | 1.24 0.07950 | 1.62 0.02196 | 2.00 0.00468
0.12 0.8652 0.50 0.4795 | 0.88 0.2133 | 1.26 0.07476 | 1.64 0.02038 | 2.10 0.00298
0.14 0.8431 0.52 04621 | 090 0.2031 | 1.28 0.07027 | 1.66 0.01890 | 2.20 0.00186
0.16 0.8210 0.54 0.4451 | 092 0.1932 | 1.30 0.06599 | 1.68 0.01751 | 2.30 0.00114
0.18 0.7991 0.56 0.4284 | 094 0.1837 | 1.32 0.06194 | 1.70 0.01612 | 2.40 0.00069
0.20 0.7773 0.58 04121 | 096 0.1746 | 1.34 0.05809 | 1.72 0.01500 | 2.50 0.00041
0.22 0.7557 0.60 0.3961 | 0.98 0.1658 | 1.36 0.05444 | 1.74 0.01387 | 2.60 0.00024
0.24 0.7343 0.62 0.3806 | 1.00 0.1573 | 1.38 0.05098 | 1.76 0.01281 | 2.70 0.00013
0.26 0.7131 0.64 0.3654 | 1.02 0.1492 | 1.40 0.04772 | 1.78 0.01183 | 2.80 0.00008
0.28 0.6921 0.66 0.3506 | 1.04 0.1413 | 1.42 0.04462 | 1.80 0.01091 | 290 0.00004
0.30 0.6714 0.68 0.3362 | 1.06 0.1339 | 1.44 0.04170 | 1.82 0.01006 | 3.00 0.00002
0.32 0.6509 0.70 0.3222 | 1.08 0.1267 | 1.46 0.03895 | 1.84 0.00926 | 3.20 0.00001
0.34 0.6306 0.72 0.3086 | 1.10 0.1198 | 1.48 0.03635 | 1.86 0.00853 | 3.40 0.00000
0.36 0.6107 0.74 0.2953 | 1.12 0.1132 | 1.50 0.03390 | 1.88 0.00784 | 3.60 0.00000
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0.6 0.8
Distance from surface x, m

T;=0°C

(@) Specified surface temperature, T, = constant.

100

4,= 7000 W/m?*

e

Time.i=10h

P 0.5 ll\—\'_
0.0 Ly :
0 0.2 0.4 0.6 0.8 1

Distance from surface x, m
T;i=0°C

(b) Specified surface heat flux, g, = constant.

Variations of temperature with position and time in a large cast iron block (& = 2.31 X 107> m?/s,
k = 80.2 W/m - °C) initially at 0 °C under different thermal conditions on the surface.
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r°c
& 3

0.2 0.4 0.6 0.8
l/** Distance from surface x, m
T.. = 100°C T;=0°C
h=220W/m?-°C

(c) Convection at the surface

100

80

s
f~
20
0
-

e,= 1.7%107 J/m?

0.2 0.4 0.6 0.8
Distance from surface x, m

T;=0°C

{cf) Energy pulse at the surface, ¢, = constant

Variations of temperature with position and time in a large cast iron block (& = 2.31 X 107> m?/s,
k = 80.2 W/m - °C) initially at 0 °C under different thermal conditions on the surface.
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Variation of temperature with position and time in a semi-infinite
solid initially at temperature T, subjected to convection to an 39

environment at T., with a convection heat transfer coefficient of h.



Contact of Two Semi-Infinite Solids

When two large bodies A and B, initially at
uniform temperatures T, ; and Ty ; are
brought into contact, they instantly achieve
temperature equality at the contact
surface.

If the two bodies are of the same material,
the contact surface temperature is the
arithmetic average, T, = (T, ;+ T3 )/2.

If the bodies are of different materials, the
surface temperature T, will be different
than the arithmetic average.

Contact of two semi-infinite solids of
different initial temperatures.
ka(Ty — Ty)  kp(Iy — Tpy) Ty — T [(kpcy)p

qsA = 4sp — — — —

| | - =
\V mayt \ ot T, =Ty \ (kpcp)a

i r

/er . /o1 . The interface temperature of two bodies
- Peplala Pep)e’s, brought into contact is dominated by the

I _ _
V (kpc,)a + V(kpc,)p body with the larger kpc,,.

EXAMPLE: When a person with a skin temperature of 35°C touches an aluminum
block and then a wood block both at 15°C, the contact surface temperature will be
15.9°C in the case of aluminum and 30°C in the case of wood.



Example:

In areas where the air temperature remains below 0°C for prolonged periods of
time, the freezing of water in underground pipes is a major concern. Fortu-
nately, the soil remains relatively warm during those periods, and it takes weeks
for the subfreezing temperatures to reach the water mains in the ground. Thus,
the soil effectively serves as an insulation to protect the water from subfreezing
temperatures in winter.

The ground at a particular location is covered with snow pack at —10°C for a
continuous period of three months, and the average soil properties at that loca-
tionare k= 0.4 W/m -°Cand a = 0.15 x 10-® m?/s (Fig. 4-24). Assuming an
initial uniform temperature of 15°C for the ground, determine the minimum
burial depth to prevent the water pipes from freezing.

rﬂ:—lﬂ“’C

| Waler plpe e

FIGURE 4—24 L



Example:

A thick wood slab (£ = 0.17 W/m - °C and o« = 1.28 X
107 m?/s) that is initially at a uniform temperature of 25°C is
exposed to hot gases at 550°C for a period of 5 minutes. The
heat transfer coefficient between the gases and the wood slab is
35 W/m? - °C. If the ignition temperature of the wood is 450°C,
determine if the wood will ignite.

Wood
Slab
T. = 25°C
Hot L—
gases SZERnEY
T, =550°C

AR,
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Example:

The soil temperature in the upper layers of the earth
varies with the variations in the atmospheric conditions. Before
a cold front moves in. the earth at a location is initially at a uni-
form temperature of 10°C. Then the area is subjected to a tem-
perature of —10°C and high winds that resulted in a convection
heat transfer coefficient of 40 W/m® - °C on the earth’s surface
for a period of 10 h. Taking the properties of the soil at that lo-
cation to be k = 0.9 W/m - °C and o = 1.6 X 107> m’/s, deter-
mine the soil temperature at distances 0, 10, 20, and 50 cm
from the earth’s surface at the end of this 10-h period.

— Winds
— T, =-10°C

Soil
T. =10°C
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TRANSIENT HEAT CONDUCTION IN
MULTIDIMENSIONAL SYSTEMS

Using a superposition approach called the product solution, the transient
temperature charts and solutions can be used to construct solutions for the two-
dimensional and three-dimensional transient heat conduction problems
encountered in geometries such as a short cylinder, a long rectangular bar, a
rectangular prism or a semi-infinite rectangular bar, provided that all surfaces of
the solid are subjected to convection to the same fluid at temperature T_, with the
same heat transfer coefficient h, and the body involves no heat generation.

The solution in such multidimensional geometries can be expressed as the
product of the solutions for the one-dimensional geometries whose intersection is
the multidimensional geometry.

T, T,

h h T. /—i\ The temperature in a short
. h cylinder exposed to

e TORe E:::I'*r Hea cznvectionarom all surfaces
ST 45 T(rx.) P

ransfer yarias in both the radial and
axial directions, and thus

\_t/ heat is transferred in both

directions. 44
(a) Long cylinder (b) Short eylinder (two-dimensional )




The solution for a multidimensional geometry is the product of the solutions of the
one-dimensional geometries whose intersection is the multidimensional body.
The solution for the two-dimensional short cylinder of height a and radius r is

equal to the product of the nondimensionalized solutions for the one-dimensional
plane wall of thickness a and the long cylinder of radius r,,.

I(r,x, 1) — T, - (T(x, 1) — 1. I(r.1) — 1.
Tf_ _ T:c .L:-l'jl[}l]j:l_|m- o T,.' — TI plane T,- . Tf infinite

wall cylinder

T,
~ Plane wall
h .f’/"“""‘-"“‘“’"*
v
{1 A short cylinder of
l | radius r, and height a
— IS the intersection of a
M—‘u Yo ‘ long cylinder of radius
— Long r, and a plane wall of
cylinder thickness a.
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T(x,v.t)— T.
T — T rectangular — F)H'ull{'\“* T}H“““[}" )

i bar

B c N T X, [) — T:n
/ Plane wall Qwall('x‘ 1 = ( X, 7) )planc

Ta‘ o Tm wall
I, // o oopo(TD-T.
h Cyl(h = Tr’ - T, S:fll.':é;

s /% e (T(x. ) — TI,)
SRR 18 o — semi-infinite
_) semi-inf Ti_ l ol f
T |
t —
( / Plane wall
- a

A long solid bar of rectangular profile
a x b is the intersection of two plane
walls of thicknesses a and b.
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The transient heat transfer for a two-dimensional
geometry formed by the intersection of two one-
dimensional geometries 1 and 2 is

Q)m;l‘{ total. 2D QJI‘J;I.\L I Qmil-‘ 2 Q)lmm | -

Transient heat transfer for a three-dimensional body
formed by the intersection of three one-dimensional

bodies 1, 2, and 3 is
+{ = —{ =
QJHLI.\L 2 Qmux |

Qm:n; total. 3D Qmm; ]
" Qm;lx 3 - Qm:lx | Q”“'\" 2




Multidimensional solutions expressed as products of one-dimensional
solutions for bodies that are initially at a uniform temperature T, and exposed
to convection from all surfaces to a medium at T,

0

L

8r.t) = E?C}_.l(r.lf}
Infinite cylinder

-~ X" ___.f_?,'
O(xn1) = E;_}‘I:w-'l (r1) g:;é‘l‘."li-illl" (x,7)

Semi-infinite cylinder

=

G r 1) =0 (1n 0 By (1,1)
Short cylinder

T )
| N
\\I.
| —» 1 I‘l"-\\
l"l
[ |
\x,k.__’!_ )

&(x,1) = gsemi- inf (5, 1)
Semi-infinite medinm

g':-"'-‘.“"” = E’:}:.":'-|t'|i-i|1r'':-"'-‘ 1) gﬁemi- inf ':."‘“ )
Ouarter-infinite medinm

Bx, vz 1=
2] (x, 18 (v, @

semi-inf semi-inf * fl‘."li-illl"l:‘:‘”
Corner region of a large medium



Multidimensional solutions expressed as products of one-dimensional
solutions for bodies that are initially at a uniform temperature T, and exposed
to convection from all surfaces to a medium at T,

2L
|—-—|-_
o |L

E}I:.'I... III_I = g'ﬁ'ﬁ'i.’II.I.I:'II'-' F_I
Infinite plate (or plane wall)

(x, v.i = aﬁ-all (x.1) tI:IIn'.:'-|t‘|i-i|1r'I:.I‘I* r)
Semi-infinite plate

B(x, vz, 1) =
&.I'“_ all (x. 1) E;_Ilsre-mi-inr' 'I.I‘I‘ ) IEIIs-:‘-mi-inr'':*"_" )
Quarter-infinite plate

Z

X

I
I
I
I
I
|
I
J— =

s
/s

L

B(x, v 1) =0 4,(x. N0, 4(v10
Infinite rectangular har

3
ra ¥ —
- ’
- Y

B(xv.2,1) =
9._.,3“ (x. 1) tr;_II'-'L-all ':.I" ) g:ifl‘."lI.-I.l'lI."I:"‘_" )
Semi-infinite rectangular bar

W

e
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———

S
~
A
|
|
I

Bx,vz.0 =
'gu-all (%, III'EII'.'L-aII ':.I" ) E;_II'.I-all (2.0
Rectangular parallelepiped



Summary

Lumped System Analysis
v" Criteria for Lumped System Analysis

Transient Heat Conduction in Large Plane Walls,
Long Cylinders, and Spheres with Spatial Effects

v" Nondimensionalized One-Dimensional Transient
Conduction Problem

v Exact Solution of One-Dimensional Transient Conduction
Problem

v' Approximate Analytical and Graphical Solutions

Transient Heat Conduction in Semi-Infinite Solids
v Contact of Two Semi-Infinite Solids

Transient Heat Conduction in Multidimensional
Systems
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