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Abstract: High dimensionality is inherent to MS-based electronic nose applications 
where hundreds of variables per measurement (m/z fragments)  a significant number of 
them being highly correlated or noisy  are available. Feature selection is, therefore, an 
unavoidable pre-processing step if robust and parsimonious pattern classification models 
are to be developed. In this article, a new strategy for feature selection has been 
introduced and its good performance demonstrated using two MS e-nose databases. The 
feature selection is conducted in three steps. The first two steps are aimed at removing 
noisy, non-informative and highly collinear features (i.e., redundant), respectively. These 
two steps are computationally inexpensive and allow for dramatically reducing the 
number of variables (near 80% of initially available features are eliminated after the 
second step). The third step makes use of a stochastic variable selection method 
(simulated annealing) to further reduce the number of variables. For example, applying 
the method to an Iberian ham database has resulted in the number of features being 
reduced from 209 down to 14. Using the surviving m/z fragments, a fuzzy ARTMAP 
classifier was able to sort ham samples according to producer and quality (11-category 
classification) with a 97.24% success rate. The whole feature selection process runs in a 
few minutes in a Pentium IV PC platform. 

 
Resumen: Una alta dimensionalidad es inherente en aplicaciones de narices electrónicas 
basadas en MS, donde se pueden encontrar cientos de variables por medida, un número 
significativo de ellas proporcionan  ruido o una alta correlación entre ellas. En este 
articulo, una nueva estrategia de selección de variables es desarrollada con buenos 
resultados usando dos bases de datos de narices electrónicas basadas en MS. El proceso 
se realizo en tres pasos. En los dos primeros pasos el objetivo es eliminar ruido e 
información altamente colineal (redundancia), respectivamente. El tercer paso se utiliza 
el método de selección estocástico (simulated annealing) para reducir significativamente 
el número de variables. El proceso de selección total se ejecuto en pocos minutos en una 
plataforma Pentium IV. 
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1. INTRODUCCIÓN 
 
In the last few years, with the use of mass 
spectrometry (MS), a new branch within electronic 
nose research has developed and gained 
importance. Unlike in classical gas 
chromatography/mass spectrometry systems 
(GC/MS), in MS based electronic noses the sample 
delivery unit directly injects complex volatile 
mixtures (such as the ones generated in the 
headspace of foodstuffs or beverages) into a 
ionisation chamber, without a previous separation 
step (provided by GC). This results in very 
complex ionisation patterns that are recorded at the 
detector side. These ionisation patterns are then 
processed by pattern recognition engines to 
perform tasks associated to electronic nose systems 
such as classification, recognition and, to a limited 
extent, quantification. [1-4].  Although the detector 
of a MS gives a signal that depends linearly, at 
least within a range, on the abundance of any given 
mass to charge ratio, the complexity of the 
ionisation patterns that are analysed in some 
particular applications justifies the need of using 
non-linear pattern recognition methods, including 
neural networks [4]. 
 
In MS-based electronic noses, every mass to 
charge ratio (m/z) in the mass spectra can be 
thought of as a sensor. In accordance with the 
electronic nose philosophy, a priori knowledge of 
the components present in the headspace being 
analysed should not been required. This is why 
most applications developed using this approach 
consider spectra consisting of a wide range of m/z 
ratios (e.g. from m/z 35 to m/z 300), which cover 
the fragmentation of volatile molecules. This 
implies that over two hundred features are going to 
be available for the pattern recognition analysis. 
Therefore, it is not uncommon that the number of 
features exceeds the number of measurements 
available to train the pattern recognition methods 
and this is a dangerous situation because there is a 
high risk of overfitting [5]. Actually, a significant 
number of sensors (i.e., m/z ratios) can be 
irrelevant (i.e., noisy) for the application 
considered, while other sensors can show highly 
correlated responses. A step of dimensionality 
reduction seems, therefore, imperative prior to 
attempt the building of pattern recognition 
methods. 
 
Different strategies have been reported for the 
reduction of dimensionality. These basically 
consist of either choosing directly among the 
variables available [6,7] (e.g., m/z ratios) or to 

compute new variables called factors (e.g., by 
performing a principal component analysis or a 
linear discriminant analysis, etc.) and selecting 
among the factors [8]. Selecting from the full 
spectrum of mass to charge ratios is challenging 
because there is considerable overlapping among 
the spectra and distinctive features can be almost 
imperceptible. Furthermore, spectra are affected by 
noise. However, methods based on the selection of 
m/z ratios are interesting because the variables 
chosen carry relevant chemical information. 
Therefore, these methods are expected to be robust 
toward the experimental conditions of each specific 
application. Unlike in m/z selection, factor 
selection uses the full spectrum (e.g. including 
noisy or redundant m/z ratios) to compute the 
factors before selecting from among them. The 
selection of an optimal subset of factors is not 
necessarily straightforward because the magnitude 
of an eigenvalue is not always a measure of its 
significance for the calibration [9]. Furthermore, 
unlike m/z ratios, factors have no chemical 
meaning.  
 
Once determined that selecting among m/z ratios is 
the more interesting approach, it should be pointed 
out that an exhaustive search is out of question, 
given the high number of variables considered for 
selection. Several methods that avoid being 
exhaustive, the so-called greedy methods, have 
been reported as useful. These include 
deterministic methods such as branch and bound, 
sequential forward selection, sequential backward 
selection or stepwise selection and, stochastic 
methods such as genetic algorithms or simulated 
annealing [10-19]. Deterministic methods can 
make a fair selection with relatively few operations 
but are prone to get trapped in a local optimum of 
the search space. On the other hand, stochastic 
methods such as genetic algorithms or simulated 
annealing are more likely to find a global optimum 
at the cost of lengthy computation. For example, a 
genetic algorithm for variable selection running in 
a Pentium IV PC platform can take as long as 
several days to converge to a good solution when 
the number of variables for selection is above two 
hundred. Therefore, applying a stochastic method 
to select among the features found in MS-based 
electronic nose applications can easily turn to be 
unpractical. 
 
In this paper we introduce a new method for an 
effective feature selection especially suitable for 
applications where the dimension of feature space 
is high, a significant degree of correlation exists 
between features and some of them are affected by 
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noise, such as in MS electronic nose applications. 
The method is efficient in the sense that after the 
selection process, only those features that are 
important for the application considered are 
retained to build the pattern recognition models and 
all the process is conducted at a very low 
computational cost. The usefulness of the new 
feature selection method is assessed using two 
different MS-based electronic nose databases. 
 
 

2. EXPERIMENTAL 
 
2.1 Solvent Database 
 
The first database consisted of measurements taken 
from samples with a well-characterised headspace. 
The samples were 4 different solutions of pure 
ethanol containing added impurities 
(trichloroethylene, 1-butanol, ethylbenzene and 
toluene). The exact composition of the different 
samples is shown in Table 1. Six aliquots of 10 ml 
of each original sample were placed into 20-ml 
glass vials and sealed hermetically with silicone 
septa and caps (i.e. 24 vials in total). Sampling 
based on solid-phase micro extraction (SPME) was 
performed with a 75-µm Carboxen/PDMS fiber 
purchased from Supelco (Supelco Park, Bellefonte, 
PA). Prior to any extraction, the fibre was 
conditioned following the manufacturer’s 
recommendations.  In each measurement, the fibre 
was pushed out of its stainless steel housing and 
exposed to the sample headspace for 20 min at 
room temperature. The SPME holder assembly 
scale was adjusted to 3.0 scale units to ensure that 
the fibre was positioned in the headspace above the 
sample in exactly the same way from run to run. 
 

Table 1: Composition of the different samples in 
database 1. Quantities are expressed in % dissolved 

in ethanol. 
 

 Compounds  
Sample # TCE 1-B EB TOL 
S1 1 1 - 1 
S2 1 1 1 1 
S3 1 1 1 - 
S4 1 - 1 1 

 
A Shimadzu QP 5000 GC/MS (Shimadzu Corp., 
Tokyo, Japan) was used to implement a MS-based 
electronic nose. The instrument was equipped with 
a capillary column (Supelcowax, 30m × 0.25 mm 
i.d., × 0.25 mm coating thickness). The volatile 
compounds trapped on the SPME fibre were 
subsequently desorbed for 3 min at 280ºC into the 

glass-lined injection port of the GC, actuated in the 
splitless mode. The carrier gas was helium 
99.995% set to 1.0 ml/min. The temperature of the 
GC oven and of the GC/MS interface was held 
constant at 250ºC so chromatographic separation 
was avoided. For any given measurement each 
unresolved peak was integrated and the resulting 
averaged mass spectrum gave a fingerprint that was 
characteristic of the headspace of the sample under 
analysis. Mass spectra were recorded at a rate of 2 
scans/s over m/z ratios that ranged between 40 to 
150 amu, operating the MS in the electron impact 
(EI) mode (70 eV). Further data analysis was 
performed on the relative mass spectra (i.e., 
normalised by the amplitude of the highest peak).   
 
2.2 Iberian ham database 
 
Eleven types of Spanish Iberian dry-cured hams 
were analysed. Samples were obtained directly 
from five producers and they differed in the type of 
food the pigs fed on during their fattening period 
(i.e., either acorn or fodder) and in their quality 
(type of pigs). Table 2 gives more details on the 
hams used. 
 
Table 2: The 11 types of Spanish Iberian dry-cured 
hams analysed. The hams differ in producer, type 

of pigs and pigs’ feeding. 
 

Ham brand Short 
name 

# Ham 
types  

Pig 
feeding 

on 
Extremadura EX 4 acorn 

Guijuelo #1 G1 1 acorn 

Huelva HU 1 acorn 

Guijuelo #2 G2 2 fodder 

Guijuelo #3 G3 3 fodder 

 
Samples were prepared as follows: three grams of 
ham (taken from biceps femoris) were crushed and 
introduced in 10 ml glass vials, which were then 
sealed with a septum and an aluminium cap. For 
each type of ham, 10 samples were prepared 
(exception made of one type from Extremadura 
with nine only). This gave a total of 109 ham 
samples to be analysed. Sampling was based on 
static headspace. A headspace autosampler Agilent 
7694 was used. Oven, loop and transfer line 
temperatures were set to 90, 100 and 110ºC, 
respectively. The times for vial equilibration, 
pressurisation, loop filling, loop equilibration and 
injection were 30, 0.4, 0.15, 0.2 and 1 minutes, 
respectively. Reproducible headspace samples 



           ISSN: 1692-7257 - Volumen 1  - Número 11 - Enero 2008 
 

 

UUnniivveerrssiiddaadd  ddee  PPaammpplloonnaa  
              II..  II..  DD..  TT..  AA..    101 

       Revis ta Colombiana de 
Tecnologías de Avanzada 

were injected into the injection port of a Hewlett-
Packard 6890 series II gas chromatograph coupled 
to a mass selective detector (Hewlett-Packard HP 
5973; Wilmington, DE, USA). The injection port 
was used in splitless mode and maintained at 
280ºC. The system was equipped with a HP 
19091J-215 (50m × 0.32mm id, film thickness 1.05 
µm) column, kept at 200ºC in isothermal 
conditions. In this way, chromatographic 
separation was avoided and the column merely 
acted as a transfer line delivering volatiles to the 
mass detector. The column flow rate was set to 1.5 
ml/min. Volatile compounds were co-eluted into 
the mass spectrometer, where mass spectra were 
obtained using an electronic impact mass selective 
detector at 70 eV, a multiplier voltage of 2706 V, 
and collecting data at a rate of 1 scan s- 1 over the 
m/z range 45–250 amu. 
 
 

3. FEATURE SELECTION 
 
The feature selection introduced here consists of 
three steps that are run consecutively. The first step 
helps detecting and removing non-informative, 
noisy features and is conducted in a supervised 
way. The second step is aimed at detecting 
collinearity between features in an unsupervised 
way. As a result, highly collinear features can be 
removed. Finally, in the third step, a greedy search 
method (e.g. a stochastic one) is applied to the 
reduced feature set, which results from applying 
the first two steps. With this approach, the whole 
variable selection process is time efficient since the 
first two steps are able to dramatically reduce the 
number of features at very low computational cost. 
 
3.1 Removal of non-informative and noisy 
features 
 
In electronic nose applications, the outcome sought 
after the system has been trained is an automated 
recognition or classification of new unknown 
samples. During the training phase, the pattern 
recognition ability of the system is built by using 
calibration samples. In the first step of feature 
selection, a criterion was used to rate the 
discrimination ability of each feature (i.e. m/z 
ratio). Measurements used for training were 
grouped in categories (e.g. measurements of the 
same type of ham were grouped in a category, 
etc.). For each m/z ratio, intra-category and inter-
category variances were computed. Intra-category 
variance was defined as the variance of an m/z 
ratio considered within a given category of 

measurements. Therefore, the intra-category 
variance of the j-th m/z ratio, was defined as: 
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Where n is the number of measurements within the 
category, m/zji is the value of mass to charge ratio j 
for measurement i and µj is the mean of mass to 
charge ratio  j over the measurements within the 
category. 
 
In a similar way, for every mass to charge ratio, a 
inter-category variance was defined as the variance 
within the category means. Therefore, the inter-
category variance was defined as: 
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Where µji is the mean of mass to charge ratio  j over 
the measurements within group i, d is the number 
of different categories and jµ is the mean over the 

µji. 
 
The discrimination ability of the j-th m/z ratio was 
defined as follows: 
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The higher the discrimination ability for a given 
m/z ratio is, the more important is this m/z ratio to 
correctly discriminate between the categories. In 
other words, noisy or non-informative mass to 
charge ratios will have associated low 
discrimination abilities. Therefore, a set of m/z 
ratios, which comprises those that have the higher 
figure of merit, is selected for further analysis. This 
method would be equivalent to compute Fisher’s 
linear discriminant if the number of categories to 
sort measurements within was d = 2. This process 
is univariate and there is a risk of eliminating those 
synergetic variables that have low discrimination 
ability when considered individually. To minimise 
this problem the process described by equations 1, 
2 and 3 is repeated considering all the possible 
combinations between two m/z ratios. Figure 1 
illustrates this process. As a result, a new list of 
figures of merit, DAi,j, i.e., the discrimination 
ability when m/z ratios i and j are used 
simultaneously, is obtained. This allows for re-
selecting variables that had been removed 
previously, if a synergistic effect is revealed. 
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However, it is important to notice that this method 
does no prevent redundant features (i.e., highly 
collinear) from being selected. This will be the task 
of the second step of feature selection. 
 
3.2 Detection and removal of redundant features 
 
Let be R the calibration matrix resulting from the 
first step of feature selection. R is a (n×p) matrix. 
Its number of columns, p, corresponds to the 
number of features selected in the first step and, its 
number of rows, n, corresponds to the number of 
measurements within the calibration set. If Rt 
denotes the transpose of R: 
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Where m/zi,mj corresponds to the intensity of the i-th 
mass to charge ratio for measurement j. For any 
mass to charge ratio, a unity-norm response vector 
can be defined as follows: 
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Equation 5 shows the unity-norm response vector 
for the i-th mass to charge ratio. Now, the degree 
of collinearity existing in the calibration set 
between two different mass to charge ratios can be 
assessed by computing the scalar product of their 
unity-norm response vectors as shown below: 
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Pi,k is the scalar product between the normalised 
response vectors associated to features i and k . Pi,k 

ranges between 0 and 1. The closer to unity Pi,k is, 
the higher the collinearity between masse to charge 
ratios i and k  is. Since n is the number of features, 
the collinearity of which is to be checked, the 
number of scalar products to be computed is 

∑
−
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−
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After these scalar products have been obtained, a 
collinearity threshold is set and used to determine 

which features are redundant and should be 
removed. This second step of variable selection is 
non-supervised since, unlike in the previous step, 
there is no need to classify training samples 
according to their category. 
 
After the removal of noisy, irre levant and 
redundant features, the set of surviving features is 
ready for the last step of feature selection.  
 
3.3 Stochastic feature selection 
 
Stochastic methods such as genetic algorithms 
(GA) or simulated annealing (SA) are more likely 
to find a global optimum in the optimisation 
problem. These methods represent a trade off 
between the simple sequential methods (prone to 
get trapped in a local optimum) and the burden of 
exponential methods [15-17]. Genetic algorithms 
and simulated annealing solve the optimisation 
problem by exploring all regions of the potential 
solutions. Because explored points in a solution 
space are chosen by stochastic rather than 
deterministic rules, stochastic methods do not need 
to make assumptions about the characteristics of 
the problem to be solved and, therefore, apply 
generally. In the particular case of feature 
selection, these methods explore different subsets 
of the original set of features. Both GA and SA 
make use of a cost function, which in the case 
reported here, is an estimate of the prediction error 
of a neural network classifier (e.g. fuzzy 
ARTMAP) computed using the training 
measurements. This cost function is used to rank 
the fitness of solutions (i.e., combinations of 
features) during the process of stochastic feature 
selection. Since in most MS-based electronic nose 
applications a high number of variables are highly 
collinear or non-informative, about 80% of the 
original variables are eliminated by the first to 
steps. Therefore, the last step is aimed at fine 
tuning the selection process. Although stochastic 
feature selection methods are time- consuming, run 
to select among a reduced set of features that result 
from the two previous steps is fast. 
 
 

4. RESULTS AND DISCUSSION 
 
4.1 Analysis of the solvent database 
 
A priori, the main challenge to correctly identify 
these compounds is due to the presence of 
ethylbenzene and toluene in the mixtures as these 
two species show some similarities between their 
mass spectra fragmentation pattern. Table 3 shows 
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which are the most intense fragments found in the 
mass spectra of the different compounds used. This 
database is a good benchmark for the feature 
selection method introduced here, since looking at 
table 3, one could select a set of mass to charge 
ratios to discriminate the different mixtures.  
 
Table 3: Most intense m/z fragments found in the 
mass spectra of the different compounds used in 
the solvent database. Fragments appear sorted by 

decreasing intensity. 

 
Therefore, the main objective sought with this 
database is to assess whether the 3-step feature 
selection was able to correctly determine, out of the 
111 features available, the few ones that would 
enable a classifier to correctly identify the 
mixtures. 
 
Before performing variable selection, a fuzzy 
ARTMAP was trained and validated using the 
leave-one-out cross validation approach. A 
description of the fuzzy ARTMAP algorithm can 
be found elsewhere [22]. The classifier made use of 
111 inputs and the number of categories was set to 
4 since this was the number of different mixtures 
analysed. The success rate in classification was 
95.83%, which corresponded to one sample S2 
being identified as S4 (see table 1). 
 
The process of feature selection was conducted as 
follows. The 24 measurements available were split 
in 6 different feature selection datasets, which 
contained 20 measurements (5 replicates per 
solvent mixture) and their corresponding 6 
validation datasets, which contained the remaining 
measurements (i.e. one measurement per solvent 
mixture not used in the corresponding feature 
selection dataset). Then the process of variable 
selection was performed 6 times on each feature 
selection dataset. The first step of feature selection 
was applied to eliminate noisy and irrelevant 
features. By setting to 0.5 the threshold value of the 
discrimination ability (both univariate and 
multivariate methods), between 31 and 35 out of 
111 features were initially selected, depending on 
the feature selection dataset used. The second step 
was then applied to eliminate collinear variables. 
By setting to 0.15 the values of the collinearity 
threshold, between 17 and 20 features were 
retained. Computing the first two steps required 

about 6 minutes in a Pentium 4 PC platform. 
Finally a simulated annealing feature selection was 
run to select among the remaining features [23]. 
The SA algorithms were run for 50 different 
annealing temperatures and the number of 
iterations per temperature was set to 17. More 
details on the simulated annealing algorithm used 
can be found in the annex. In the end, only 3 
features were selected (no matter the feature 
selection dataset used). These were the m/z ratios 
46, 56 and 106. Using these three features as 
inputs, 6 fuzzy ARTMAP classifiers were trained 
employing the 6 feature selection datasets, and 
their performance in classification estimated using 
the corresponding validation datasets. The success 
rate in solvent mixture classification, estimated 
over the 6 training/validation sets was 100%. 
Figure 2 shows a block diagram of the feature 
selection and validation processes. It is important 
to keep in mind that for every fuzzy ARTMAP 
classifier, the validation implies using 
measurements that have not participated in the 
feature selection process and are, therefore, new. 
Considering table 3, it can be derived why the 
method has selected these specific features: 
• m/z=46, which is the most relevant mass to 

charge ratio for Toluene not found for the 
other compounds in the solvent mixture. 

• m/z=56, which is the most relevant mass to 
charge ratio for 1-Butanol. 

• m/z=106, the second more relevant mass to 
charge ratio for Ethylbenzene.  

 
It is important to notice that the different feature 
selection processes have disregarded using m/z=91. 
This is the most frequent ion for ethylbenzene and 
toluene, which would not help discriminating 
between these two compounds. Finally, no mass to 
charge ratio that is characteristic of 
trichloroethylene has been selected. This is correct 
because trichloroethylene is present in all the 
different samples to be discriminated and, 
therefore, no information about this compound is 
needed for a good discrimination among the 
samples analysed (see table 3). These results show 
that the three-step feature selection process 
introduced here is able to find the essential 
information needed to solve the discrimination 
problem considered. The whole process of feature 
selection took 15 minutes to complete in a Pentium 
4 PC platform. 
 
4.2 Analysis of the Iberian ham database 
 
Initially an 11-category classification was 
attempted using a fuzzy ARTMAP classifier 

Compound 10 more intense m/z fragments 
Tricloroetilene 132, 130, 95, 97, 60, 134, 47, 62, 59, 94 
1-Butanol 56, 41, 43, 42, 55, 45, 40, 57, 44, 53 
Ethylbenzene 91, 106, 51, 65, 77, 78, 50, 92, 52, 63 
Toluene 91, 92, 65, 51, 63, 45, 50, 46, 62, 89 
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without a previous step of feature selection. 
Because in this database the number of 
measurements available was higher, a different 
method of cross validation was employed. A 5-fold 
validation was implemented, which consists of 
defining 5 training and validation datasets. A 
training dataset comprised 8 replicate 
measurements (out of the 10 available) per type of 
ham (i.e., 87 measurements in total, since one type 
of ham had 9 replicate measurements instead of 
10). The corresponding validation dataset 
comprised the 2 measurements per ham sample that 
had been left out (i.e. 22 measurements). 
Therefore, the fuzzy ARTMAP classifier was 
trained and validated 5 times using the 5 training 
and validation sets and the success rate in ham 
classification was averaged over the 5 tests. The 
success rates for the 5 folds were 63.63%, 95.45%, 
100%, 100% and 81.81%, which gave an overall 
classification success rate of 88.18% (the standard 
deviation was 15.61%). This corresponds, in 
average, to 13 samples out of 110 being 
misclassified. Confusions occur between samples 
belonging to different producers and different 
quality hams within a producer. 
 
The process of feature selection was performed 
using the 5 training and validation sets described 
above. For every pair of training and validation 
sets, feature selection was conducted on the 
training set, then a fuzzy ARTMAP classifier was 
trained using the features selected and, finally, its 
success rate in ham classification was estimated 
using measurements in the validation dataset. The 
first and second steps of feature selection were 
applied to remove noisy, irrelevant and redundant 
variables in every training and validation fold. The 
threshold values used were 0.5 and 0.8, 
respectively. This resulted in 42 features being 
selected in average. 
 
Then, the third step of feature selection, which 
consisted in selecting among the surviving features 
using a simulated annealing procedure, was 
performed. As previously, the process was 
conducted independently for the 5 folds available. 
The SA algorithms were run for 50 different 
annealing temperatures and the number of 
iterations per temperature was set to 40. Fuzzy 
ARTMAP classifiers (one per fold) were trained 
and validated using as inputs the features that 
remained selected after the last step. The success 
rates in sample classification were 81.18%, 
95.45%, 90.90%, 100% and 90.90% and that gave 
an overall success rate of 91.68% in ham 
classification (the standard deviation was 6.98%). 

This corresponds, in average, to 9 samples out of 
110 being misclassified. Confusions occur between 
samples belonging to different producers but never 
between different quality hams within a producer. 
The average number of features selected after the 
three-step variable selection was 19 (see table 4), 
i.e., near 8% of the features initially available. 
Table 4 shows that a high number of features are 
shared by the different folds. This demonstrates the 
robustness of the variable selection method 
applied.  
 

Table 4: m/z fragments selected for each 
selection/validation fold after the three-step feature 

selection process. The last row shows the most 
frequent m/z fragments. 

 

 
Finally, an eleven-category classification was 
envisaged using a fuzzy ARTMAP classifier using 
the outcome of the previous variable selection 
steps. Only the 14 most frequently selected m/z 
ratios were used as inputs of the classifier (see 
table 4 for details). Its performance in the correct 
classification of Iberian hams was estimated to be 
97.25% by using a leave one out cross-validation 
approach. Only 3 out of 109 ham samples were 
misclassified. Furthermore, a correct 
discrimination between hams from pigs fed on 
acorn or fodder was found to be possible. These 
results compare favourably to the 94.49% 
classification success rate reached with a fuzzy 
ARTMAP classifier that used all the features 
available (i.e., 209).  
 
A short discussion on the fragments selected by the 
feature selection method and used to build the ham 
classification models is as follows. Differences in 
pig feeding lead to different volatile profiles 
obtained from crushed samples of subcutaneous fat 
and meat in Iberian hams. The levels of hexanal 
and pentanal, which arise mainly from the 
oxidation of linoleic acid, are rather similar 
regardless of pig feeding. On the other hand, 

Fold # Selected m/z fragments 

1 45, 47, 49, 56, 58, 59, 64, 70, 71, 73, 77, 79, 
80, 81, 83, 85, 94, 100, 104, 111, 114 

2 45, 47, 49, 53, 56, 57, 58, 60, 61, 64, 71, 72, 
77, 81, 83, 84, 94, 100, 114, 208 

3 47, 48, 55, 61, 64, 67, 77, 81, 82, 83, 84, 
104, 138 

4 
45, 49, 56, 58, 64, 71, 77, 81, 82, 83, 84, 
104, 138 

5 
45, 47, 51, 53, 56, 57, 58, 60, 61, 64, 67, 69, 
70, 71, 72, 73, 79, 81, 82, 83, 84, 85, 93, 94, 
101, 105, 108, 114, 133, 138 

Most frequent 
m/z fragments 

45,   47,   49,   56,   58,   64,   71,   77,   81,   
83,   84,   94, 114, 138 
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nonanal, the most important aldehyde derived from 
oleic acid is found in significantly larger quantities 
in pigs fed on acorn than in pigs fed on fodder 
[24,25]. The m/z fragment 114 selected in he 
model is present in the mass spectrum of nonanal, 
and therefore, helps discriminating between acorn 
and fodder fed pigs. Other fragments selected such 
as m/z 77, may arise from aromatic volatiles, m/z 
71 from esters, alkanes, propylketones and 
butanoate and m/z 45 could be due to the presence 
carboxylic acids or alcohols. Finally, the presence 
of pentylketones and methylketones is revealed by 
m/z 56 and 58, respectively. All these compounds 
have been reported to be characteristic of the 
headspace of dry cured Iberian hams [24,25].  
 
 

4. CONCLUSIO NS 
 
A new strategy for feature selection has been 
introduced and its good performance demonstrated 
using different MS e-nose databases. The feature 
selection consists of three steps, the first two being 
aimed at eliminating non-informative and highly 
collinear features, respectively. The removal of 
noisy and redundant features is computationally 
inexpensive and allows for dramatically reducing 
the number of variables (near 80% of initially 
available features are eliminated after the second 
step). This is especially interesting to solve MS-
based electronic nose problems where the number 
of features (m/z fragments) available per 
measurement is high. The third step makes use of 
simulated annealing, which is a stochastic search 
method to further reduce the number of variables 
(fine-tuning of the feature selection process). 
 
The strategy has been applied initially to a database 
consisting of synthetic mixtures of volatile 
compounds. This simple database has been used to 
show that the feature selection process is able to 
identify a minimal set of fragments that enables the 
correct discrimination between mixtures using a 
simple fuzzy ARTMAP classifier. Furthermore, 
given the simple nature of the problem envisaged, 
it was possible to show that the fragments selected 
‘made sense’, that is, were characteristic ionisation 
fragments of the species present in the mixtures to 
be discriminated. 
 
Once the correct performance of the feature 
selection method was demonstrated, it was applied 
to an additional database (Iberian hams). 
 
Applying the method to the Iberian ham database 
resulted in the number of features being reduced 

from 209 down to 14. Using the surviving features, 
a fuzzy ARTMAP classifier was able to 
discriminate ham samples according to producer 
and quality (11-category classification) with a 
97.24% success rate. It was also possible to 
identify, with a 100% success rate, whether the 
pigs had been fed on acorn or fodder. 
 
For the different databases studied, performing 
variable selection results in a dramatic decrease in 
dimensionality and an increase in classification 
performance. The methods introduced here are 
useful not only to solve MS-based electronic nose 
problems, but are of interest for any electronic nose 
application suffering from high-dimensionality 
problems, no matter the sensing technology 
employed. 
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