CLASS
 Fourth Units (Second part)

Energy analysis of closed systems

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

MOVING BOUNDARY WORK

Moving boundary work (P dV work):
The expansion and compression work in a piston-cylinder device.

$$
\delta W_{b}=F d s=P A d s=P d V
$$

$$
W_{b}=\int_{1}^{2} P d V \quad(\mathrm{~kJ})
$$

Quasi-equilibrium process:
A process during which the system remains nearly in equilibrium at all times.
W_{b} is positive \rightarrow for expansion
W_{b} is negative \rightarrow for compression

A gas does a differential amount of work δW_{b} as it forces the piston to move by a differential amount ds.

The work associated with a moving boundary is called boundary work.

The moving boundary

GAS

The area under the process curve on a P - V diagram represents the boundary work.
Area $=A=\int_{1}^{2} d A=\int_{1}^{2} P d V$

The boundary work done during a process depends on the path followed as well as the end states.

The net work done during a cycle is the difference between the work done by the system and the work done on the system.

Boundary work for a constant-volume process

A rigid tank contains air at 500 kPa and $150^{\circ} \mathrm{C}$. As a result of heat transfer to the surroundings, the temperature and pressure inside the tank drop to $65^{\circ} \mathrm{C}$ and 400 kPa , respectively. Determine the boundary work done during this process.

Boundary work for a constant-pressure process

A frictionless piston-cylinder device contains 10 lbm of steam at 60 psia and $320^{\circ} \mathrm{F}$. Heat is now transferred to the steam until the temperature reaches $400^{\circ} \mathrm{F}$. If the piston is not attached to a shaft and its mass is constant, determine the work done by the steam during this process.

Polytropic, Isothermal, and Isobaric processes

$P=C V^{-n}$ Polytropic process: C, n (polytropic exponent) constants

$$
W_{b}=\int_{1}^{2} P d V=\int_{1}^{2} C V^{-n} d V=C \frac{V_{2}^{-n+1}-V_{1}^{-n+1}}{-n+1}=\frac{P_{2} V_{2}-P_{1} V_{1}}{1-n} \begin{aligned}
& \text { Polytropic } \\
& \text { process }
\end{aligned}
$$

$$
W_{b}=\frac{m R\left(T_{2}-T_{1}\right)}{1-n} \text { Polytropic and for ideal gas }
$$

$$
W_{b}=\int_{1}^{2} P d V=\int_{1}^{2} C V^{-1} d V=P \vee \ln \left(\frac{V_{2}}{V_{1}}\right) \quad \begin{aligned}
& \text { When } n=1 \\
& \text { (isothermal process) }
\end{aligned}
$$

$$
W_{b}=\int_{1}^{2} P d V=P_{0} \int_{1}^{2} d V=P_{0}\left(V_{2}-V_{1}\right) \text { Constant pressure process }
$$

What is the boundary work for a constantvolume process?

Schematic and P-V diagram for a polytropic process.

Boundary work for a constant-pressure process

A piston-cylinder device contains $0.05 \mathrm{~m}^{3}$ of a gas initially at 200 kPa . At this state, a linear spring that has a spring constant of $150 \mathrm{kN} / \mathrm{m}$ is touching the piston but exerting no force on it. Now heat is transferred to the gas, causing the piston to rise and to compress the spring until the volume inside the cylinder doubles. If the cross-sectional area of the piston| is $0.25 \mathrm{~m}^{2}$, determine (a) the final pressure inside the cylinder, (b) the total work done by the gas, and (c) the fraction of this work done against the spring to compress it.

ENERGY BALANCE FOR CLOSED SYSTEMS

$$
\underbrace{E_{\text {in }}-E_{\text {out }}}=\underbrace{\Delta E_{\text {system }}}(\mathrm{kJ})
$$

Net energy transfer
by heat, work, and mass

Change in internal, kinetic, potential, etc., energies

Energy balance for any system undergoing any process

$\underbrace{\dot{E}_{\text {in }}-\dot{E}_{\text {out }}}_{$| Rate of net energy transfer |
| :---: |
| by heat, work, and mass |$}=\underbrace{d E_{\text {system }} / d t}_{$| Rate of change in internal, |
| :---: |
| Kintic, potential e ect., energies |$}(\mathrm{kW}) \underbrace{}_{$| Energy balance |
| :--- |
| in the rate form |$}$

The total quantities are related to the quantities per unit time is

$$
\left.\begin{array}{l}
Q=\dot{Q} \Delta t, \quad W=\dot{W} \Delta t, \quad \text { and } \quad \Delta E=(d E / d t) \Delta t \quad(\mathrm{~kJ}) \\
e_{\text {in }}-e_{\text {out }}=\Delta e_{\text {system }} \quad(\mathrm{kJ} / \mathrm{kg}) \begin{array}{l}
\text { Energy balance per } \\
\text { unit mass basis }
\end{array} \\
\delta E_{\text {in }}-\delta E_{\text {out }}=d E_{\text {system }} \quad \text { or } \quad \delta e_{\text {in }}-\delta e_{\text {out }}=d e_{\text {system }} \text { Energy balance in } \\
\text { differential form }
\end{array}\right] \begin{aligned}
& W_{\text {net,out }}=Q_{\text {net,in }} \text { or } \quad \dot{W}_{\text {net,out }}=\dot{Q}_{\text {net,in }} \quad \begin{array}{l}
\text { Energy balance } \\
\text { for a cycle }
\end{array}
\end{aligned}
$$

$Q_{\text {net,in }}-W_{\text {net,out }}=\Delta E_{\text {system }} \quad$ or $\quad Q-W=\Delta E$

$$
\begin{aligned}
& Q=Q_{\text {net,in }}=Q_{\text {in }}-Q_{\text {out }} \\
& W=W_{\text {net }, \text { out }}=W_{\text {out }}-W_{\text {in }}
\end{aligned}
$$

Energy balance when sign convention is used (i.e., heat input and work output are positive; heat output and work input are negative).

For a cycle $\Delta E=0$, thus $Q=W$.

Various forms of the first-law relation for closed systems when sign convention is used.

The first law cannot be proven mathematically, but no process in nature is known to have violated the first law, and this should be taken as sufficient proof.

Energy balance for a constant-pressure expansion or compression process

General analysis for a closed system undergoing a quasi-equilibrium constant-pressure process. Q is to the system and W is from the system.

$$
\begin{aligned}
& \quad Q-W=\Delta U+\Delta K E^{Z^{0}}+\Delta P E^{7} \\
& Q-W_{\text {other }}^{0}-W_{b}=U_{2}-U_{1} \\
& Q-W_{\text {other }}-P_{0}\left(V_{2}-V_{1}\right)=U_{2}-U_{1} \\
& Q-W_{\text {other }}=\left(U_{2}+P_{2} V_{2}\right)-\left(U_{1}+P_{1} V_{1}\right) \\
& H=U+P V \\
& Q-W_{\text {other }}=H_{2}-H_{1}
\end{aligned}
$$

For a constant-pressure expansion or compression process:

$\Delta U+W_{b}=\Delta H$

An example of constant-pressure process

$$
W_{e, \text { in }}-Q_{\text {out }}-W_{b}=\Delta U
$$

$$
W_{e, \text { in }}-Q_{\text {out }}=\Delta H=m\left(h_{2}-h_{1}\right)
$$

SPECIFIC HEATS

Specific heat at constant volume, c_{v} : The energy required to raise the temperature of the unit mass of a substance by one degree as the volume is maintained constant.
Specific heat at constant pressure, c_{p} : The energy required to raise the temperature of the unit mass of a substance by one degree as the pressure is maintained constant.

$m=1 \mathrm{~kg}$
$\Delta T=1{ }^{\circ} \mathrm{C}$
Specific heat $=5 \mathrm{~kJ} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$
5 kJ

Specific heat is the energy required to raise the temperature of a unit mass of a substance by one Constant-
volume and
constant-
pressure specific
heats c_{ν} and c_{p}
(values are for
helium gas).
 degree in a specified way.

- The equations in the figure are valid for any substance undergoing any process.
- c_{v} and c_{p} are properties.
- c_{ν} is related to the changes in internal energy and c_{p} to the changes in enthalpy.
- A common unit for specific heats is $\mathrm{kJ} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$ or $\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{K}$. Are these units identical?

0.718 kJ
0.855 kJ

The specific heat of a substance changes with temperature.

True or False?

c_{p} is always greater than c_{v}.

$c_{v}=\left(\frac{\partial u}{\partial T}\right)_{v}$
$=$ the change in internal energy with temperature at constant volume

Formal definitions of c_{ν} and c_{p}.
$c_{p}=\left(\frac{\partial h}{\partial T}\right)_{p}$
$=$ the change in enthalpy with temperature at constant pressure

INTERNAL ENERGY, ENTHALPY, AND SPECIFIC HEATS OF IDEAL GASES

$$
\begin{aligned}
u & =u(T) \\
h & =h(T) \\
c_{v} & =c_{v}(T) \\
c_{p} & =c_{p}(T)
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{rl}
h & =u+P v \\
P v & =R T
\end{array}\right\} \quad h=u+R T \\
& u=u(T) \quad h=h(T) \\
& d u=c_{v}(T) d T \quad d h=c_{p}(T) d T
\end{aligned}
$$

$$
\Delta u=u_{2}-u_{1}=\int_{1}^{2} c_{v}(T) d T
$$

$$
\Delta h=h_{2}-h_{1}=\int_{1}^{2} c_{p}(T) d T
$$

For ideal gases, u, h, c_{v}, and c_{p} vary with temperature only.

- At low pressures, all real gases approach ideal-gas behavior, and therefore their specific heats depend on temperature only.
- The specific heats of real gases at low pressures are called ideal-gas specific heats, or zero-pressure specific heats, and are often denoted $c_{p 0}$ and $c_{v 0}$.
 specific heats for some gases (see Table A-2c for C_{p}
Temperature, K equations).
- u and h data for a number of gases have been tabulated.
- These tables are obtained by choosing an arbitrary reference point and performing the integrations by treating state 1 as the reference state.

AIR		
$T, \mathrm{~K}$	$u, \mathrm{~kJ} / \mathrm{kg}$	$h, \mathrm{~kJ} / \mathrm{kg}$
0	0	0
\vdots	\vdots	\vdots
300	214.07	300.19
310	221.25	310.24
\cdot	\cdot	\vdots

In the preparation of ideal-gas tables, 0 K is chosen as the reference temperature.

Internal energy and enthalpy change when specific heat is taken constant at an average value

$$
\begin{align*}
& u_{2}-u_{1}=c_{v, \mathrm{avg}}\left(T_{2}-T_{1}\right) \\
& h_{2}-h_{1}=c_{p, \mathrm{avg}}\left(T_{2}-T_{1}\right) \tag{kJ/kg}
\end{align*}
$$

For small temperature intervals, the specific heats may be assumed to vary linearly with temperature.

$$
\begin{aligned}
\Delta u & =c_{V} \Delta T & \Delta u & =c_{V} \Delta T
\end{aligned} \quad \text { process, const }
$$

The relation $\Delta u=c_{v} \Delta T$ is valid for any kind of

Three ways of calculating Δu and Δh

1. By using the tabulated u and h data. This is the easiest and most accurate way when tables are readily available.
2. By using the c_{ν} or c_{p} relations (Table A-2c) as a function of temperature and performing the integrations. This is very inconvenient for hand calculations but quite desirable for computerized calculations. The results obtained are very accurate.
3. By using average specific heats. This is very simple and certainly very convenient when property tables are not available. The results obtained are reasonably accurate if the temperature interval is not very large.

Three ways of calculating Δu.

Specific Heat Relations of Ideal Gases

$$
\begin{gathered}
h=u+R T \\
d h=d u+R d T \\
d h=c_{p} d T \text { and } d u=c_{v} d T
\end{gathered}
$$

The relationship between c_{p}, c_{v} and R

$$
c_{p}=c_{v}+R \quad(\mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K})
$$

On a molar basis

$$
\bar{c}_{p}=\bar{c}_{v}+R_{u} \quad(\mathrm{~kJ} / \mathrm{kmol} \cdot \mathrm{~K})
$$

$$
k=\frac{c_{p}}{c_{v}} \quad \begin{aligned}
& \text { Specific } \\
& \text { heat ratio }
\end{aligned}
$$

- The specific ratio varies with temperature, but this variation is very mild.
- For monatomic gases (helium, argon, etc.), its value is essentially constant at 1.667 .
- Many diatomic gases, including air, have a specific heat ratio of about 1.4 at room temperature.

INTERNAL ENERGY, ENTHALPY, AND SPECIFIC HEATS OF SOLIDS AND LIQUIDS

Incompressible substance: A substance whose specific volume (or density) is constant. Solids and liquids are incompressible substances.

The specific volumes of incompressible substances remain constant during a process.

The c_{v} and c_{p} values of incompressible substances are identical and are denoted by c.

Internal Energy Changes

$$
d u=c_{v} d T=c(T) d T
$$

$$
\Delta u=u_{2}-u_{1}=\int_{1}^{2} c(T) d T \quad(\mathrm{~kJ} / \mathrm{kg})
$$

$\Delta u \cong c_{\text {avg }}\left(T_{2}-T_{1}\right) \quad(\mathrm{kJ} / \mathrm{kg})$

Enthalpy Changes

$$
\begin{aligned}
& h=u+P v \\
& d h=d u+v d P+P d v=d u+v d P \\
& \Delta h=\Delta u+v \Delta P \cong c_{\text {avg }} \Delta T+v \Delta P \quad(\mathrm{~kJ} / \mathrm{kg})
\end{aligned}
$$

For solids, the term $\vee \Delta P$ is insignificant and thus $\Delta h=\Delta u \cong c_{\text {avg }} \Delta T$. For liquids, two special cases are commonly encountered:

1. Constant-pressure processes, as in heaters $(\Delta P=0): \Delta h=\Delta u \cong c_{\text {avg }} \Delta T$
2. Constant-temperature processes, as in pumps $(\Delta T=0): \Delta h=\vee \Delta P$
$h_{@ P, T} \cong h_{f @ T}+{\vee_{f @ T}\left(P-P_{\text {sat @ } T}\right) \text { The enthalpy of a }}_{\text {compressed liquid }}$
A more accurate relation than $h_{\circledast P T T} \cong h_{f @ T}$

Energy analysis of open systems

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

FLOW WORK AND THE ENERGY OF A FLOWING FLUID

Flow work, or flow energy: The work (or energy) required to push the mass into or out of the control volume. This work is necessary for maintaining a continuous flow through a control volume.

$$
F=P A
$$

$$
\begin{equation*}
W_{\text {flow }}=F L=P A L=P V \tag{kJ}
\end{equation*}
$$

$$
w_{\text {flow }}=P V \quad(\mathrm{~kJ} / \mathrm{kg})
$$

piston
Schematic for flow work.

In the absence of acceleration, the force applied on a fluid by a piston is equal to the force applied on the piston by the fluid. ${ }_{22}$

Total Energy of a Flowing Fluid

$$
\begin{aligned}
& e=u+\mathrm{ke}+\mathrm{pe}=u+\frac{V^{2}}{2}+g z \quad(\mathrm{~kJ} / \mathrm{kg}) \\
& \theta=P v+e=P V+(u+\mathrm{ke}+\mathrm{pe}) \\
& h=u+P v \\
& \theta=h+\mathrm{ke}+\mathrm{pe}=h+\frac{V^{2}}{2}+g z \quad(\mathrm{~kJ} / \mathrm{kg})
\end{aligned}
$$

The flow energy is automatically taken care of by enthalpy. In fact, this is the main reason for defining the property enthalpy.

The total energy consists of three parts for a nonflowing fluid and four parts for a flowing fluid.

Energy Transport by Mass

Amount of energy transport: $\quad E_{\text {mass }}=m \theta=m\left(h+\frac{V^{2}}{2}+g z\right)$
Rate of energy transport: $\quad \dot{E}_{\text {mass }}=\dot{m} \theta=\dot{m}\left(h+\frac{V^{2}}{2}+g z\right)$

The product $\dot{m}_{i} \theta_{i}$ is the energy
When the kinetic and potential energies of a fluid stream are negligible

$$
E_{\mathrm{mass}}=m h \quad \dot{E}_{\mathrm{mass}}=\dot{m} h
$$

When the properties of the mass at each inlet or exit change with time as well as over the cross section

$$
E_{\mathrm{in}, \mathrm{mass}}=\int_{m_{i}} \theta_{i} \delta m_{i}=\int_{m_{i}}\left(h_{i}+\frac{V_{i}^{2}}{2}+g z_{i}\right) \delta m_{i}
$$ transported into control volume by mass per unit time.

ENERGY ANALYSIS OF STEADY-FLOW SYSTEMS

$$
Q_{\text {net, in }}+W_{\text {shaf, net, in }}=\sum_{\text {out }} \dot{m}\left(h+\frac{V^{2}}{2}+g z\right)-\sum_{\text {in }} \dot{m}\left(h+\frac{V^{2}}{2}+g z\right)
$$

- For steady flow, time rate of change of the energy content of the CV is zero.
- This equation states: the net rate of energy transfer to a CV by heat and work transfers during steady flow is equal to the difference between the rates of outgoing and incoming energy flows with mass.

ENERGY ANALYSIS OF STEADY-FLOW

 SYSTEMS

Many engineering systems such as power plants operate under steady conditions.

Under steady-flow conditions, the fluid properties at an inlet or exit remain constant (do not change with time).

Under steady-flow conditions, the mass and energy contents of a control volume remain constant.

Mass and Energy balances for a steady-flow process

$\sum_{\text {in }} \dot{m}=\sum_{\text {out }} \dot{m} \quad(\mathrm{~kg} / \mathrm{s})$

$$
\begin{array}{rll}
\dot{m}_{1} & =\dot{m}_{2} & \text { Mass } \\
\rho_{1} V_{1} A_{1} & =\rho_{2} V_{2} A_{2} & \text { balance }
\end{array}
$$

operation.
A water heater in steady
 potential, etc., energies

> Rate of net energy transfer by heat, work, and mass

Rate of net energy transfer in by heat, work, and mass
$\dot{E}_{\text {out }}$
Rate of net energy transfer out
by heat, work, and mass

$$
\dot{Q}_{\mathrm{in}}+\dot{W}_{\mathrm{in}}+\sum_{\text {in }} \underbrace{\dot{m}\left(h+\frac{V^{2}}{2}+g z\right)}_{\text {for each inlet }}=\dot{Q}_{\mathrm{out}}+\dot{W}_{\mathrm{out}}+\sum_{\text {out }} \dot{m}(h+\underbrace{\left.\frac{V^{2}}{2}+g z\right)}_{\text {for each exit }}
$$

Energy balance relations with sign conventions

(i.e., heat input and work output are positive)

$$
\dot{Q}-\dot{W}=\sum_{\text {out }} \underbrace{\dot{m}\left(h+\frac{V^{2}}{2}+g z\right)}_{\text {for each exit }}-\sum_{\text {in }} \underbrace{\dot{m}\left(h+\frac{V^{2}}{2}+g z\right)}_{\text {for each inlet }}
$$

$$
\begin{aligned}
& \dot{Q}-\dot{W}=\dot{m}\left[h_{2}-h_{1}+\frac{V_{2}^{2}-V_{1}^{2}}{2}+g\left(z_{2}-z_{1}\right)\right] \\
& q-w=h_{2}-h_{1}+\frac{V_{2}^{2}-V_{1}^{2}}{2}+g\left(z_{2}-z_{1}\right) \\
& q-w=h_{2}-h_{1} q=\dot{Q} / \dot{m} w=\dot{W} / \dot{m}
\end{aligned}
$$

when kinetic and potential energy changes are negligible

$$
\begin{aligned}
& \frac{\mathrm{J}}{\mathrm{~kg}} \equiv \frac{\mathrm{~N} \cdot \mathrm{~m}}{\mathrm{~kg}} \equiv\left(\mathrm{~kg} \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \frac{\mathrm{m}}{\mathrm{~kg}} \equiv \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \\
& \left(\text { Also, } \frac{\mathrm{Btu}}{\mathrm{lbm}} \equiv 25,037 \frac{\mathrm{ft}^{2}}{\mathrm{~s}^{2}}\right)
\end{aligned}
$$

Some energy unit equivalents Under steady operation, shaft work and electrical work are the only forms of work a simple compressible system may involve.

SOME STEADY-FLOW ENGINEERING DEVICES

Many engineering devices operate essentially under the same conditions for long periods of time. The components of a steam power plant (turbines, compressors, heat exchangers, and pumps), for example, operate nonstop for months before the system is shut down for maintenance. Therefore, these devices can be conveniently analyzed as steady-flow devices.

A modern land-based gas turbine used for electric power production. This is a General Electric LM5000 turbine. It has a length of 6.2 m , it weighs 12.5 tons, and produces 55.2 MW at 3600 rpm with steam injection.

$\begin{aligned} & V_{1} \\ & \mathrm{~m} / \mathrm{s} \end{aligned}$	$\begin{gathered} V_{2} \\ \mathrm{~m} / \mathrm{s} \end{gathered}$	$\Delta \mathrm{ke}$ kJ/kg
0	45	1
50	67	1
100	110	1
200	205	1
500	502	1
At very even s velocit signific the kin fluid.	high all c s can nt ch tic en	elocities, anges in cause anges in ergy of the

Nozzles and Diffusers

Nozzles and diffusers are shaped so that they cause large changes in fluid velocities and thus kinetic energies.

Nozzles and diffusers are commonly utilized in jet engines, rockets, spacecraft, and even garden hoses.
A nozzle is a device that increases the velocity of a fluid at the expense of pressure.
A diffuser is a device that increases the pressure of a fluid by slowing it down.
The cross-sectional area of a nozzle decreases in the flow direction for subsonic flows and increases for supersonic flows. The reverse is true for diffusers.
Energy $\quad \dot{E}_{\text {in }}=\dot{E}_{\text {out }}$ balance for a nozzle or diffuser:

$$
\dot{m}\left(h_{1}+\frac{V_{1}^{2}}{2}\right)=\dot{m}\left(h_{2}+\frac{V_{2}^{2}}{2}\right)
$$

$$
(\text { since } \dot{Q} \cong 0, \dot{W}=0, \text { and } \Delta \mathrm{pe} \cong 0)
$$

Turbines and Compressors

$$
q_{\text {out }}=16 \mathrm{~kJ} / \mathrm{kg}
$$

Energy balance for the

 compressor in this figure:$$
\begin{aligned}
\dot{E}_{\text {in }} & =\dot{E}_{\text {out }} \\
\dot{W}_{\text {in }}+\dot{m} h_{1} & =\dot{Q}_{\text {out }}+\dot{m} h_{2}
\end{aligned}
$$

(since $\Delta \mathrm{ke}=\Delta \mathrm{pe} \cong 0$)

- Turbine drives the electric generator In steam, gas, or hydroelectric power plants.
- As the fluid passes through the turbine, work is done against the blades, which are attached to the shaft. As a result, the shaft rotates, and the turbine produces work.
- Compressors, as well as pumps and fans, are devices used to increase the pressure of a fluid. Work is supplied to these devices from an external source through a rotating shaft.
- A fan increases the pressure of a gas slightly and is mainly used to mobilize a gas.
- A compressor is capable of compressing the gas to very high pressures.
- Pumps work very much like compressors except that they handle liquids instead of gases.

Throttling valves

(a) An adjustable valve

(b) A porous plug
(c) A capillary tube

The temperature of an ideal gas does not change during a throttling ($h=$ constant) process since $h=h(T)$.

Throttling valves are any kind of flow-restricting devices that cause a significant pressure drop in the fluid.

What is the difference between a turbine and a

 throttling valve?The pressure drop in the fluid is often accompanied by a large drop in temperature, and for that reason throttling devices are commonly used in refrigeration and airconditioning applications.

$$
\begin{array}{ll}
\text { Energy } & h_{2} \cong h_{1} \\
\text { balance } & u_{1}+P_{1} v_{1}=u_{2}+P_{2} v_{2}
\end{array}
$$

$$
\text { Internal energy }+ \text { Flow energy }=\text { Constant }
$$

During a throttling process, the enthalpy of a fluid remains constant. But internal and flow energies may be converted to each other.

Mixing chambers

In engineering applications, the section where the mixing process takes place is commonly referred to as a mixing chamber.

The T-elbow of an ordinary shower serves as the mixing chamber for the hot- and the cold-water streams.

Energy balance for the adiabatic mixing chamber in the figure is:

$$
\begin{aligned}
\dot{E}_{\text {in }} & =\dot{E}_{\text {out }} \\
\dot{m}_{1} h_{1}+\dot{m}_{2} h_{2} & =\dot{m}_{3} h_{3}
\end{aligned}
$$

(since $\dot{Q} \cong 0, W=0, \mathrm{ke} \cong \mathrm{pe} \cong 0$)

Heat exchangers

Heat exchangers are devices where two moving fluid streams exchange heat without mixing. Heat exchangers are widely used in various industries, and they come in various designs.

A heat exchanger can be as simple as two concentric pipes.

(a) System: Entire heat exchanger $\left(Q_{\mathrm{CV}}=0\right)$

(b) System: Fluid A $\left(Q_{\mathrm{CV}} \neq 0\right)$

The heat transfer associated with a heat exchanger may be zero or nonzero depending on how the control volume is selected.

Mass and energy balances for the adiabatic heat exchanger in the figure is:

$$
\begin{array}{r}
\dot{m}_{1}=\dot{m}_{2}=\dot{m}_{w} \\
\dot{m}_{3}=\dot{m}_{4}=\dot{m}_{R} \\
\hline \dot{E}_{\text {in }}=\dot{E}_{\text {out }}
\end{array}
$$

$$
\dot{m}_{1} h_{1}+\dot{m}_{3} h_{3}=\dot{m}_{2} h_{2}+\dot{m}_{4} h_{4}
$$

Pipe and duct fow

The transport of liquids or gases in pipes and ducts is of great importance in many engineering applications. Flow through a pipe or a duct usually satisfies the steady-flow conditions.

Heat losses from a hot fluid flowing through an uninsulated pipe or duct to the cooler environment may be very significant.

Pipe or duct flow may involve more than one form of work at the same time.

Energy balance for the pipe flow shown in the figure is

$$
\begin{gathered}
\dot{E}_{\text {in }}=\dot{E}_{\text {out }} \\
\dot{W}_{e, \text { in }}+\dot{m} h_{1}=\dot{Q}_{\text {out }}+\dot{m} h_{2} \\
\dot{W}_{e, \text { in }}-\dot{Q}_{\text {out }}=\dot{m} c_{p}\left(T_{2}-T_{1}\right)
\end{gathered}
$$

ENERGY ANALYSIS OF STEADY-FLOW SYSTEMS

- For single-stream devices, mass flow rate is constant.

$$
\begin{aligned}
q_{\text {net,in }}+w_{\text {shaft,net, in }} & =h_{2}-h_{1}+\frac{V_{2}^{2}-V_{1}^{2}}{2}+g\left(z_{2}-z_{1}\right) \\
w_{\text {shaft, net, in }}+\frac{P_{1}}{\rho_{1}}+\frac{V_{1}^{2}}{2}+g z_{1} & =\frac{P_{2}}{\rho_{2}}+\frac{V_{2}^{2}}{2}+g z_{2}+\left(u_{2}-u_{1}-q_{\text {net, in }}\right) \\
\frac{P_{1}}{\rho_{1}}+\frac{V_{1}^{2}}{2}+g z_{1}+w_{\text {pump }} & =\frac{P_{2}}{\rho_{2}}+\frac{V_{2}^{2}}{2}+g z_{2}+w_{\text {turbine }}+e_{\text {mech,loss }}
\end{aligned}
$$

ENERGY ANALYSIS OF STEADY-FLOW SYSTEMS

- Divide by g to get each term in units of length

$$
\frac{P_{1}}{\rho_{1} g}+\frac{V_{1}^{2}}{2 g}+z_{1}+h_{\text {pump }}=\frac{P_{2}}{\rho_{2} g}+\frac{V_{2}^{2}}{2 g}+z_{2}+h_{\text {turbine }}+h_{L}
$$

- Magnitude of each term is now expressed as an equivalent column height of fluid, i.e., Head

The Bernoulli Equation

- If we neglect piping losses, and have a system without pumps or turbines

$$
\frac{P_{1}}{\rho_{1} g}+\frac{V_{1}^{2}}{2 g}+z_{1}=\frac{P_{2}}{\rho_{2} g}+\frac{V_{2}^{2}}{2 g}+z_{2}
$$

- This is the Bernoulli equation
- It can also be derived using Newton's second law of motion (see text, p. 187).
- 3 terms correspond to: Static, dynamic, and hydrostatic head (or pressure).

HGL and EGL

- It is often convenient to plot mechanical energy graphically using heights.
- Hydraulic Grade Line

$$
H G L=\frac{P}{\rho g}+z
$$

- Energy Grade Line (or total energy)

$$
E G L=\frac{P}{\rho g}+\frac{V^{2}}{2 g}+z
$$

The Bernoulli Equation

- The Bernoulli equation is an approximate relation between pressure, velocity, and elevation and is valid in regions of steady, incompressible flow where net frictional forces are negligible.
- Equation is useful in flow regions outside of boundary layers and wakes.

The Bernoulli Equation

- Limitations on the use of the Bernoulli Equation
\checkmark Steady flow: $d / d t=0$
\checkmark Frictionless flow
\checkmark No shaft work: $\mathrm{w}_{\text {pump }}=\mathrm{w}_{\text {turbine }}=0$
\checkmark Incompressible flow: $\rho=$ constant
\checkmark No heat transfer: $q_{\text {net, }, \text { n }}=0$
\checkmark Applied along a streamline (except for irrotational flow)

Mechanical Energy

- Mechanical energy can be defined as the form of energy that can be converted to mechanical work completely and directly by an ideal mechanical device such as an ideal turbine.
- Flow P / ρ, kinetic V^{2} / g, and potential $g z$ energy are the forms of mechanical energy $e_{\text {mech }}=P / \rho+V^{2} / g+g z$
- Mechanical energy change of a fluid during incompressible flow becomes

$$
\Delta e_{\text {mech }}=\frac{P_{2}-P_{1}}{\rho}+\frac{V_{2}^{2}-V_{1}^{2}}{2}+g\left(z_{2}-z_{1}\right)
$$

- In the absence of loses, $\Delta e_{\text {mech }}$ represents the work supplied to the fluid $\left(\Delta e_{\text {mech }}>0\right)$) or extracted from the fluid ($\Delta e_{\text {mech }}<0$).

example

Consider a river flowing toward a lake at an average velocity of $3 \mathrm{~m} / \mathrm{s}$ at a rate of $500 \mathrm{~m}^{3} / \mathrm{s}$ at a location 90 m above the lake surface. Determine the total mechanical energy of the river water per unit mass and the power generation potential of the entire river at that location.

Efficiency

- Transfer of $e_{\text {mech }}$ is usually accomplished by a rotating shaft: shaft work
- Pump, fan, propulsion: receives shaft work (e.g., from an electric motor) and transfers it to the fluid as mechanical energy
- Turbine: converts $e_{\text {mech }}$ of a fluid to shaft work.
- In the absence of irreversibilities (e.g., friction), mechanical efficiency of a device or process can be defined as

$$
\eta_{\text {mech }}=\frac{E_{\text {mech }, \text { out }}}{E_{\text {mech }, \text { in }}}=1-\frac{E_{\text {mech }, \text { loss }}}{E_{\text {mech }, \text { in }}}
$$

- If $\eta_{\text {mech }}<100 \%$, losses have occurred during conversion.

Pump and Turbine Efficiencies

- In fluid systems, we are usually interested in increasing the pressure, velocity, and/or elevation of a fluid.
- In these cases, efficiency is better defined as the ratio of (supplied or extracted work) vs. rate of increase in mechanical energy

$$
\begin{aligned}
& \eta_{\text {pump }}=\frac{\Delta \dot{E}_{\text {mech }, \text { fluid }}}{\dot{W}_{\text {shaft,in }}} \\
& \eta_{\text {turbine }}=\frac{\dot{W}_{\text {shaft,out }}}{\left|\Delta \dot{E}_{\text {mech, fluid }}\right|}
\end{aligned}
$$

- Overall efficiency must include motor or generator efficiency.

Example:

In a hydroelectric power plant, $120 \mathrm{~m}^{3} / \mathrm{s}$ of water flows from an elevation of 100 m to a turbine, where electric generated. The overall efficiency of the turbinegenerator is 80 percent. Disregarding frictional
 losses in piping, estimate the electric power output of this plant.

Example:

A garden hose attached with a nozzle is used to fill a 20-gal bucket. The inner diameter of the hose is 1 in and it reduces to 0.5 in at the nozzle exit. If the average velocity in the hose is $8 \mathrm{ft} / \mathrm{s}$, determine:
(a) the volume and mass flow rates of water through the hose
(b) how long it will take to fill the bucket with water, and
(c) the average velocity of water at the nozzle exit.

Example:

A well-insulated rigid tank contains 5 kg of a saturated liquid-vapor mixture of water at 100 kPa . Initially, three-quarters of the mass is in the liquid phase. An electric resistor placed in the tank is connected to a $110-\mathrm{V}$ source, and a current of 8 A flows through the resistor when the switch is turned on. Determine how long it will take to vaporize all the liquid in the tank. Also, show the process on a $T-V$ diagram with respect to saturation lines.

Example:

Water flows through a horizontal pipe at a rate of $1 \mathrm{gal} / \mathrm{s}$. The pipe consist of two sections of diameters 4 in and 2 in with a smooth reducing section. The pressure difference between the two pipe sections is measured by a mercury manometer. Neglecting frictional effects, determine the differential height of mercury between the two pipe sections.

Example:

The liquid in the Figure has a $s=0,85$. Estimate the flow rate from the tank for a) no losses and b) pipe losses $h_{L}=4.5 V^{2} /(2 g)$.

Example:

Air enters an adiabatic nozzle steadily at $300 \mathrm{kPa}, 200^{\circ} \mathrm{C}$, and $30 \mathrm{~m} / \mathrm{s}$ and leaves at 100 kPa and $180 \mathrm{~m} / \mathrm{s}$. The inlet area of the nozzle is 80 cm 2 . Determine:
(a) the mass flow rate through the nozzle,
(b) the exit temperature of the air, and
(c) the exit area of the nozzle

Example:

A hot-water stream at $80^{\circ} \mathrm{C}$ enters a mixing chamber with a mass flow rate of $0.5 \mathrm{~kg} / \mathrm{s}$ where it is mixed with a stream of cold water at $20^{\circ} \mathrm{C}$. If it is desired that the mixture leave the chamber at $42^{\circ} \mathrm{C}$, determine the mass flow rate of the coldwater stream. Assume all the streams are at a pressure of 250 kPa .

Example:

An oil pump is drawing 35 kW of electric power while pumping oil with $\rho=860 \mathrm{~kg} / \mathrm{m}^{3}$ at a rate of $0.15 \mathrm{~m}^{3} / \mathrm{s}$. The inlet and outlet diameters of the pipe are 8 cm and 12 cm , respectively. If the pressure rise of oil in the pump is measured to be 450 kPa and the motor efficiency is 80%, determine the mechanical efficiency of the pump.

MOMENTUM ANALYSIS

NEWTON'S LAWS

Newton's laws: Relations between motions of bodies and the forces acting on them.
Newton's first law: A body at rest remains at rest, and a body in motion remains in motion at the same velocity in a straight path when the net force acting on it is zero.
Therefore, a body tends to preserve its state of inertia.
Newton's second law: The acceleration of a body is proportional to the net force acting on it and is inversely proportional to its mass.
Newton's third law: When a body exerts a force on a second body, the second body exerts an equal and opposite force on the first.
Therefore, the direction of an exposed reaction force depends on the body taken as the system.

Newton's second law:

$$
\vec{F}=m \vec{a}=m \frac{d \vec{V}}{d t}=\frac{d(m \vec{V})}{d t}
$$

Linear momentum or just the momentum of the body: The product of the mass and the velocity of a body.
Newton's second law is usually referred to as the linear momentum equation.

Linear momentum is the product of mass and velocity, and its direction is the direction of velocity.

Conservation of momentum principle: The momentum of a system remains constant only when the net force acting on it is zero.

Newton's second law is also expressed as the rate of change of the momentum of a body is equal to the net force acting on it.

The counterpart of Newton's second law for rotating rigid bodies is expressed as $\vec{M}=I \vec{\alpha}$, where \vec{M} is the net moment or torque applied on the body, I is the moment of inertia of the body about the axis of rotation, and $\vec{\alpha}$ is the angular acceleration. It can also be expressed in terms of the rate of change of angular momentum $d \vec{H} / d t$ as

Angular momentum equation:

$$
\begin{equation*}
\vec{M}=I \vec{\alpha}=I \frac{d \vec{\omega}}{d t}=\frac{d(I \vec{\omega})}{d t}=\frac{d \vec{H}}{d t} \tag{13-2}
\end{equation*}
$$

Angular momentum about x-axis:

$$
M_{x}=I_{x} \frac{d \omega_{x}}{d t}=\frac{d H_{x}}{d t}
$$

The conservation of angular momentum Principle: The total angular momentum of a rotating body remains constant when the net torque acting on it is zero, and thus the angular momentum of such systems is conserved.

CHOOSING A CONTROL VOLUME

A control volume can be selected as any arbitrary region in space through which fluid flows, and its bounding control surface can be fixed, moving, and even deforming during flow.
Many flow systems involve stationary hardware firmly fixed to a stationary surface, and such systems are best analyzed using fixed control volumes.
When analyzing flow systems that are moving or deforming, it is usually more convenient to allow the control volume to move or deform.
In deforming control volume, part of the control surface moves relative to other parts.

FORCES ACTING ON A CONTROL VOLUME

The forces acting on a control volume consist of
body forces that act throughout the entire body of the control volume (such as gravity, electric, and magnetic forces) and
surface forces that act on the control surface (such as pressure and viscous forces and reaction forces at points of contact).
Only external forces are considered in the analysis.

Total force acting on control volume:

$$
\sum \vec{F}=\sum \vec{F}_{\text {boad }}+\sum \vec{F}_{\text {spratae }}
$$

The total force acting on a control volume is composed of body forces and surface forces; body force is shown on a differential volume element, and surface force is shown on a differential surface element.

The most common body force is that of gravity, which exerts a downward force on every differential element of the control volume.
Gravitational force acting on a fluid element: $\quad d \vec{F}_{\text {gravity }}=\rho \vec{g} d V$
Gravitational vector in Cartesian coordinates: $\quad \vec{g}=-g \vec{k}$
Total body force acting on control volume: $\quad \sum \vec{F}_{\mathrm{body}}=\int_{\mathrm{CV}} \rho \vec{g} d V=m_{\mathrm{CV}} \vec{g}$
Total force: $\underbrace{\sum \vec{F}}_{\text {total force }}=\underbrace{\sum \vec{F}_{\text {gravity }}}_{\text {body force }}+\underbrace{\sum \vec{F}_{\text {pressure }}+\sum \vec{F}_{\text {viscous }}+\sum \vec{F}_{\text {other }}}_{\text {surface forces }}$

A common simplification in the application of Newton's laws of motion is to subtract the atmospheric pressure and work with gage pressures.
This is because atmospheric pressure acts in all directions, and its effect cancels out in every direction.
This means we can also ignore the pressure forces at outlet sections where the fluid is discharged to the atmosphere since the discharge pressure in such cases is very near atmospheric pressure at subsonic velocities.

With atmospheric pressure considered

With atmospheric pressure cancelled out

Atmospheric pressure acts in all directions, and thus it can be ignored when performing force balances since its effect cancels out in every direction.

Cross section through a faucet assembly, illustrating the importance of choosing a control volume wisely; CV B is much easier to work with than CV A.

THE LINEAR MOMENTUM EQUATION

Newton's second law for a system of mass m subjected to a net force \vec{F} is expressed from Eq. 14-1 as

$$
\begin{equation*}
\sum \vec{F}=m \vec{a}=m \frac{d \vec{V}}{d t}=\frac{d}{d t}(m \vec{V}) \tag{13-9}
\end{equation*}
$$

where $m \vec{V}$ is the linear momentum of the system. Noting that both the density and velocity may change from point to point within the system, Newton's second law can be expressed more generally as

$$
\begin{equation*}
\sum \vec{F}=\frac{d}{d t} \int_{\mathrm{sys}} \rho \vec{V} d V \tag{13-10}
\end{equation*}
$$

where $\rho \vec{V} d V$ is the momentum of a differential element $d V$, which has mass $\delta m=\rho d V$.

Newton's second law can be stated as the sum of all external forces acting on a system is equal to the time rate of change of linear momentum of the system. This statement is valid for a coordinate system that is at rest or moves with a constant velocity, called an inertial coordinate system or inertial reference frame.

$$
\frac{d(m \vec{V})_{\text {sys }}}{d t}=\frac{d}{d t} \int_{\mathrm{CV}} \rho \vec{V} d V+\int_{\mathrm{CS}} \rho \vec{V}\left(\vec{V}_{r} \cdot \vec{n}\right) d A
$$

General:

$$
\sum \vec{F}=\frac{d}{d t} \int_{\mathrm{CV}} \rho \vec{V} d V+\int_{\mathrm{CS}} \rho \vec{V}\left(\vec{V}_{r} \cdot \vec{n}\right) d A
$$

$$
\vec{V}_{r}=\vec{V}-\vec{V}_{\mathrm{CS}}
$$

$\left(\begin{array}{c}\text { The sum of all } \\ \text { external forces } \\ \text { acting on a CV }\end{array}\right)=\left(\begin{array}{c}\text { The time rate of change } \\ \text { of the linear momentum } \\ \text { of the contents of the CV }\end{array}\right)+\left(\begin{array}{c}\text { The net flow rate of } \\ \text { linear momentum out of the } \\ \text { control surface by mass flow }\end{array}\right)$
Fixed CV:

$$
\sum \vec{F}=\frac{d}{d t} \int_{\mathrm{CV}} \rho \vec{V} d V+\int_{\mathrm{CS}} \rho \vec{V}(\vec{V} \cdot \vec{n}) d A
$$

$\frac{d B_{\mathrm{sys}}}{d t}=\frac{d}{d t} \int_{\mathrm{CV}} \rho b d V+\int_{\mathrm{CS}} \rho b\left(\vec{r}_{r} \cdot \vec{N}\right) d A$

$\left.\frac{d\left(m \vec{V}_{\text {sys }}\right.}{d t}=\frac{d}{d t} \int_{\mathrm{CV}} \rho \vec{V} d V+\int_{\mathrm{CS}} \rho \vec{V} \vec{V}_{r} \cdot \vec{N}\right) d A$
The linear momentum equation is obtained by replacing B in the Reynolds transport theorem by the momentum $m \vec{V}$, and b by the momentum per unit mass \vec{V}.

An 180° elbow supported by the ground

The momentum equation is commonly used to calculate the forces (usually on support systems or connectors) induced by the flow.

In most flow systems, the sum of forces $\Sigma \vec{F}$ consists of weights,

$$
\sum \vec{F}=\frac{d}{d t} \int_{\mathrm{CV}} \rho \vec{V} d V+\int_{\mathrm{CS}} \rho \vec{V}(\vec{V} \cdot \vec{n}) d A
$$ pressure forces, and reaction forces. Gage pressures are used here since atmospheric pressure cancels out on all sides of the control surface.

$$
\sum \vec{F}=\int_{\mathrm{CS}} \rho \vec{V}\left(\vec{V}_{r} \cdot \vec{n}\right) d A \begin{aligned}
& \text { Steady } \\
& \text { flow }
\end{aligned}
$$

$$
\dot{m}=\int_{A_{c}} \rho(\vec{V} \cdot \vec{n}) d A_{c}=\rho V_{\text {avg }} A_{c} \begin{aligned}
& \text { Mass flow rate across } \\
& \text { an inlet or outlet }
\end{aligned}
$$

$$
\int_{A_{c}} \rho \vec{V}(\vec{V} \cdot \vec{n}) d A_{c}=\rho V_{\text {avg }} A_{c} \vec{V}_{\text {avg }}=\dot{m} \vec{V}_{\text {avg }} \quad \begin{aligned}
& \text { Momentum flow rate across } \\
& \text { a uniform inlet or outlet: }
\end{aligned}
$$

In a typical engineering problem, the control volume may contain many inlets and outlets; at each inlet or outlet we define the mass flow rate and the average velocity.

(b)

Examples of inlets or outlets in which the uniform flow approximation is reasonable:
(a) the well-rounded entrance to a pipe,
(b) the entrance to a wind tunnel test section, and
(c) a slice through a free water jet in air.

Momentum-Flux Correction Factor, β

The velocity across most inlets and outlets is not uniform.
The control surface integral of Eq. 13-13 may be converted into algebraic form using a dimensionless correction factor β, called the momentum-flux correction factor.

$$
\begin{equation*}
\sum \vec{F}=\frac{d}{d t} \int_{\mathrm{CV}} \rho \vec{V} d V+\int_{\mathrm{CS}} \rho \vec{V}(\vec{V} \cdot \vec{n}) d A \tag{13-13}
\end{equation*}
$$

$$
\sum \vec{F}=\frac{d}{d t} \int_{\mathrm{CV}} \rho \vec{V} d V+\sum_{\text {out }} \beta \dot{m} \vec{V}_{\text {avg }}-\sum_{\text {in }} \beta \dot{m} \vec{V}_{\text {avg }}
$$

Momentum flux across an inlet or outlet: $\quad \int_{A_{c}} \rho \vec{V}(\vec{V} \cdot \vec{n}) d A_{c}=\beta \dot{m} \vec{V}_{\text {avg }}$

$$
\beta=\frac{\int_{A_{c}} \rho V(\vec{V} \cdot \vec{n}) d A_{c}}{\dot{m} V_{\text {avg }}}=\frac{\int_{A_{c}} \rho V(\vec{V} \cdot \vec{n}) d A_{c}}{\rho V_{\text {avg }} A_{c} V_{\text {avg }}}
$$

β is always greater than or equal to 1 . β is close to 1 for turbulent flow and not very close to 1 for fully developed laminar flow.

Momentum-flux correction factor:

$$
\beta=\frac{1}{A_{c}} \int_{A_{c}}\left(\frac{V}{V_{\text {avg }}}\right)^{2} d A_{c}
$$

Steady Flow

Steady linear momentum equation:

$$
\sum \vec{F}=\sum_{\text {out }} \beta \dot{m} \vec{V}-\sum_{\text {in }} \beta \vec{m} \vec{V}
$$

The net force acting on the control volume during steady flow is equal to the difference between the rates of outgoing and incoming momentum flows.

$$
\sum \vec{F}=\sum_{\text {out }} \beta \dot{m} \vec{V}-\sum_{\text {in }} \beta \dot{m} \vec{V}
$$

The net force acting on the control volume during steady flow is equal to the difference between the outgoing and the incoming momentum fluxes.

Steady Flow with One Inlet and One Outlet

$\sum \vec{F}=\dot{m}\left(\beta_{2} \vec{V}_{2}-\beta_{1} \vec{V}_{1}\right)$
One inlet and one outlet
$\sum F_{x}=\dot{m}\left(\beta_{2} V_{2, x}-\beta_{1} V_{1, x}\right)$
Along x coordinate

A control volume with only one inlet and one outlet.

Note: $\vec{V}_{2} \neq \vec{V}_{1}$ even if $\left|\vec{V}_{2}\right|=\left|\vec{V}_{1}\right|$
The determination by vector addition of the reaction force on the support caused by a change of direction of water.

Flow with No External Forces

No external forces: $\quad 0=\frac{d(m \vec{V})_{\mathrm{CV}}}{d t}+\sum_{\text {out }} \beta \dot{m} \vec{V}-\sum_{\text {in }} \beta \dot{m} \vec{V}$ In the absence of external forces, the rate of change of the momentum of a control volume is equal to the difference between the rates of incoming and outgoing momentum flow rates.
$\frac{d(m \vec{V})_{\mathrm{CV}}}{d t}=m_{\mathrm{CV}} \frac{d \vec{V}_{\mathrm{CV}}}{d t}=(m \overrightarrow{\mathrm{a}})_{\mathrm{CV}}=m_{\mathrm{CV}} \vec{a}$
$\vec{F}_{\text {thrust }}=m_{\mathrm{Cv}} \vec{a}=\sum_{\text {in }} \beta \dot{m} \vec{V}-\sum_{\text {out }} \beta \dot{m} \vec{V}$

The thrust needed to lift the space shuttle is generated by the rocket engines as a result of momentum change of the fuel as it is accelerated from about zero to an exit speed of about $2000 \mathrm{~m} / \mathrm{s}$ after combustion.

Example:

A constant-velocity horizontal water jet from a stationary nozzle impinges normally on a vertical flat plate that is held in a nearly frictionless track. As the water jet hits the plate, it begins to move due to the water force. Will the acceleration of the plate remain constant or change? Explain.

Example:

A 90° elbow is used to direct water flow at a rate of $25 \mathrm{~kg} / \mathrm{s}$ in a horizontal pipe upward. The diameter of the entire elbow is 10 cm . The elbow discharges water into the atmosphere, and thus the pressure at the exit is the local atmospheric pressure. The elevation difference between the centers of the exit and the inlet of the elbow is 35 cm . The weight of the elbow and the water in it is considered to be negligible. Determine (a) the gage pressure at the center of the inlet of the elbow and (b) the anchoring force needed to hold the elbow in place. Take the momentum-flux correction factor to be 1.03.

Example:

Commercially available large wind turbines have blade span diameters as large as 100 m and generate over 3 MW of electric power at peak design conditions. Consider a wind turbine with a $90-\mathrm{m}$ blade span subjected to $25-\mathrm{km} / \mathrm{h}$ steady winds. If the combined turbinegenerator efficiency of the wind turbine is 32 percent, determine (a) the power generated by the turbine and (b) the horizontal force exerted by the wind on the supporting mast of the turbine. Take the density of air to be $1.25 \mathrm{~kg} / \mathrm{m}^{3}$, and disregard frictional effects.

Example:

> Water accelerated by a nozzle to $15 \mathrm{~m} / \mathrm{s}$ strikes the vertical back surface of a cart moving horizontally at a constant velocity of $5 \mathrm{~m} / \mathrm{s}$ in the flow direction. The mass flow rate of water is $25 \mathrm{~kg} / \mathrm{s}$. After the strike, the water stream splatters off in all directions in the plane of the back surface. (a) Determine the force that needs to be applied on the brakes of the cart to prevent it from accelerating. (b) If this force were used to generate power instead of wasting it on the brakes, determine the maximum amount of power that can be generated.

REVIEW OF ROTATIONAL MOTION AND ANGULAR MOMENTUM

The relations between angular distance θ, angular velocity ω, and linear velocity V.

- Newton's second law requires that there must be a force acting in the tangential direction to cause angular acceleration.
- The strength of the rotating effect, called the moment or torque, is proportional to the magnitude of the force and its distance from the axis of rotation.
- The perpendicular distance from the axis of rotation to the line of action of the force is called the moment arm, and the torque M acting on a point mass m at a normal distance r from the axis of rotation is expressed as
$M=r F_{t}=r m a_{t}=m r^{2} \alpha \quad$ Torque
$M=\int_{\text {mass }} r^{2} \alpha \delta m=\left[\int_{\text {mass }} r^{2} \delta m\right] \alpha=I \alpha$
I is the moment of inertia of the body about the axis of rotation, which is a measure of the inertia of a body against rotation.
Unlike mass, the rotational inertia of a body also depends on the distribution of the mass of the body with respect to the axis of rotation.

Mass, $m \leftrightarrow$ Moment of inertia, I
Linear acceleration, $a \leftrightarrow$ Angular acceleration, α
Linear velocity, $V \leftrightarrow$ Angular velocity, ω Linear momentum \leftrightarrow Angular momentum

$$
m \vec{V} \leftrightarrow I \vec{\omega}
$$

Force, $F \leftrightarrow$ Torque, M

$$
\vec{F}=m \vec{a} \leftrightarrow \vec{M}=I \vec{\alpha}
$$

Moment of force, $M \leftrightarrow$ Moment of momentum, H

$$
\vec{M}=\vec{r} \times \vec{F} \leftrightarrow \vec{H}=\vec{r} \times m \vec{V}
$$

Analogy between corresponding linear and angular quantities.

$$
H=\int_{\text {mass }} r^{2} \omega \delta m=\left[\int_{\text {mass }} r^{2} \delta m\right] \omega=I \omega \quad \begin{aligned}
& \text { Angular momentum } \\
& \vec{H}=I \vec{\omega}
\end{aligned}
$$

$$
\vec{M}=I \vec{\alpha}=I \frac{d \vec{\omega}}{d t}=\frac{d(I \vec{\omega})}{d t}=\frac{d \vec{H}}{d t} \quad \begin{aligned}
& \text { Angular momentum } \\
& \text { equation }
\end{aligned}
$$

Angular momentum of point mass m rotating at angular velocity ω at distance r from the axis of rotation.

$$
\begin{equation*}
\omega=\frac{2 \pi \dot{n}}{60} \tag{rad/s}
\end{equation*}
$$

Angular velocity versus rpm

The relations between angular velocity, rpm, and the power transmitted through a shaft.

```
\mp@subsup{\dot{W}}{\mathrm{ shaft }}{}=FV=Fr\omega=M\omega
```


$\dot{W}_{\text {shaft }}=\omega M=2 \pi \dot{n} M \quad$ (W) Shaft power

$\mathrm{KE}_{r}=\frac{1}{2} I \omega^{2}$ Rotational kinetic energy

During rotational motion, the direction of velocity changes even when its magnitude remains constant. Velocity is a vector quantity, and thus a change in direction constitutes a change in velocity with time, and thus acceleration. This is called centripetal acceleration.

$$
a_{r}=\frac{V^{2}}{r}=r \omega^{2}
$$

Centripetal acceleration is directed toward the axis of rotation (opposite direction of radial acceleration), and thus the radial acceleration is negative. Centripetal acceleration is the result of a force acting on an element of the body toward the axis of rotation, known as the centripetal force, whose magnitude is $F_{r}=m V^{2} / r$.

Tangential and radial accelerations are perpendicular to each other, and the total linear acceleration is determined by their vector sum:

$$
\vec{a}=\vec{a}_{t}+\vec{a}_{r}
$$

THE ANGULAR MOMENTUM EQUATION

Many engineering problems involve the moment of the linear momentum of flow streams, and the rotational effects caused by them.
Such problems are best analyzed by the angular momentum equation, also called the moment of momentum equation.
An important class of fluid devices, called turbomachines, which include centrifugal pumps, turbines, and fans, is analyzed by the angular momentum equation.

The moment of a force \vec{F} about a point O is the vector product of the position vector \vec{r} and \vec{F}.

A force whose line of action passes through point O produces zero moment about point O.

The determination of the direction of the moment by the right-hand rule.

Moment of momentum
$\vec{H}=\vec{r} \times m \vec{V}$
$\frac{d \vec{H}_{\mathrm{sys}}}{d t}=\frac{d}{d t} \int_{\mathrm{sys}}(\vec{r} \times \vec{V}) \rho d V$
Moment of momentum (system)

$$
\vec{H}_{\mathrm{sys}}=\int_{\mathrm{sys}}(\vec{r} \times \vec{V}) \rho d V
$$

Angular momentum

$\sum \vec{M}=\frac{d \vec{H}_{\text {sys }}}{d t} \quad \begin{aligned} & \text { equation for a system } \\ & \sum \vec{M}=\sum(\vec{r} \times \vec{F})\end{aligned}$
$\frac{d \vec{H}_{\mathrm{sys}}}{d t}=\frac{d}{d t} \int_{\mathrm{CV}}(\vec{r} \times \vec{V}) \rho d V+\int_{\mathrm{CS}}(\vec{r} \times \vec{V}) \rho\left(\vec{V}_{r} \cdot \vec{n}\right) d A$

$\frac{d \vec{H}_{\text {sys }}}{d t}=\frac{d}{d t} \int_{\mathrm{CV}}(\vec{r} \times \vec{V}) \rho d V+\int_{\mathrm{CS}}(\vec{r} \times \vec{V}) \rho\left(\vec{V}_{r} \cdot \vec{n}\right) d A$
The angular momentum equation is obtained by replacing B in the Reynolds transport theorem by the angular momentum \vec{H}, and b by the angular momentum per unit mass $\vec{r} \times \vec{V}$.

General: $\quad \sum \vec{M}=\frac{d}{d t} \int_{\mathrm{CV}}(\vec{r} \times \vec{V}) \rho d V+\int_{\mathrm{CS}}(\vec{r} \times \vec{V}) \rho\left(\vec{V}_{r} \cdot \vec{n}\right) d A$
$\left(\begin{array}{c}\text { The sum of all } \\ \text { external moments } \\ \text { acting on a CV }\end{array}\right)=\left(\begin{array}{c}\text { The time rate of change } \\ \text { of the angular momentum } \\ \text { of the contents of the CV }\end{array}\right)+\left(\begin{array}{c}\text { The net flow rate of } \\ \text { angular momentum } \\ \text { out of the control } \\ \text { surface by mass flow }\end{array}\right)$

Fixed CV: $\quad \sum \vec{M}=\frac{d}{d t} \int_{\mathrm{CV}}(\vec{r} \times \vec{V}) \rho d V+\int_{\mathrm{CS}}(\vec{r} \times \vec{V}) \rho(\vec{V} \cdot \vec{n}) d A$

Special Cases

During steady flow, the amount of angular momentum within the control volume remains constant, and thus the time rate of change of angular momentum of the contents of the control volume is zero.

Steady flow:

$$
\sum \vec{M}=\int_{\mathrm{CS}}(\vec{r} \times \vec{V}) \rho\left(\vec{V}_{r} \cdot \vec{n}\right) d A
$$

An approximate form of the angular momentum equation in terms of average properties at inlets and outlets:

$$
\sum \vec{M}=\frac{d}{d t} \int_{\mathrm{CV}}(\vec{r} \times \vec{V}) \rho d V+\sum_{\text {out }} \vec{r} \times \dot{m} \vec{V}-\sum_{\mathrm{in}} \vec{r} \times \dot{m} \vec{V}
$$

$$
\text { Steady flow: } \quad \sum \vec{M}=\sum_{\text {out }} \vec{r} \times \dot{m} \vec{V}-\sum_{\text {in }} \vec{r} \times \dot{m} \vec{V}
$$

The net torque acting on the control volume during steady flow is equal to the difference between the outgoing and incoming angular momentum flow rates.

$$
\sum M=\sum_{\text {out }} r \dot{m} V-\sum_{\text {in }} r \dot{m} V \begin{aligned}
& \text { scalar form of angular } \\
& \text { momentum equation }
\end{aligned}
$$

Radial-Flow Devices

Radial-flow devices: Many rotary-flow devices such as centrifugal pumps and fans involve flow in the radial direction normal to the axis of rotation.
Axial-flow devices are easily analyzed using the linear momentum equation.
Radial-flow devices involve large changes in angular momentum of the fluid and are best analyzed with the help of the angular momentum equation.

Side and frontal views of a typical centrifugal pump.

The conservation of mass equation for steady incompressible flow

$$
\dot{V}_{1}=\dot{V}_{2}=\dot{V} \quad \rightarrow \quad\left(2 \pi r_{1} b_{1}\right) V_{1, n}=\left(2 \pi r_{2} b_{2}\right) V_{2, n}
$$

$$
V_{1, n}=\frac{\dot{V}}{2 \pi r_{1} b_{1}} \quad \text { and } \quad V_{2, n}=\frac{\dot{V}}{2 \pi r_{2} b_{2}}
$$

$\sum M=\sum_{\text {out }} r \dot{m} V-\sum_{\text {in }} r \dot{m} V$ angular momentum

$$
\mathrm{T}_{\mathrm{shaft}}=\dot{m}\left(r_{2} V_{2, t}-r_{1} V_{1, t}\right)
$$

Euler's turbine formula

$$
\mathrm{T}_{\text {shaft }}=\dot{m}\left(r_{2} V_{2} \sin \alpha_{2}-r_{1} V_{1} \sin \alpha_{1}\right)
$$

$$
\text { When } \quad V_{1, t}=\omega r_{1} \quad V_{2, t}=\omega r_{2}
$$

$$
\mathrm{T}_{\text {shaft, ideal }}=\dot{m} \omega\left(r_{2}^{2}-r_{1}^{2}\right)
$$

$$
\dot{W}_{\text {shaft }}=\omega \mathrm{T}_{\text {shaft }}=2 \pi \dot{n} \mathrm{~T}_{\text {shaft }} \quad \omega=2 \pi \dot{n}
$$

An annular control volume that encloses the impeller section of a centrifugal pump.

Example:

Water is flowing through a 12 -cm-diameter pipe that consists of a 3-m-long vertical and 2-m-long horizontal section with a 90° elbow at the exit to force the water to be discharged downward, as shown in Fig. P6-47, in the vertical direction. Water discharges to atmospheric air at a velocity of $4 \mathrm{~m} / \mathrm{s}$, and the mass of the pipe section when filled with water is 15 kg per meter length. Determine the moment acting at the intersection of the vertical and horizontal sections of the pipe (point A). What would your answer be if the flow were discharged upward instead of downward?

Example:

A large lawn sprinkler with four identical arms is to be converted into a turbine to generate electric power by attaching a generator to its rotating head, as shown in Fig. 6-38. Water enters the sprinkler from the base along the axis of rotation at a rate of $20 \mathrm{~L} / \mathrm{s}$ and leaves the nozzles in the tangential direction. The sprinkler rotates at a rate of 300 rpm in a horizontal plane. The diameter of each jet is 1 cm , and the normal distance between the axis of rotation and the center of each nozzle is 0.6 m . Estimate the electric power produced.

