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MOVING BOUNDARY WORK

Moving boundary work (P dV work): Quasi-equilibrium process:

The expansion and compression work A process during which the system

In a piston-cylinder device. remains nearly in equilibrium at all
times.

oW, =Fds = PAds = P dV _ - _
W, is positive — for expansion

differential
amount ds.

2 W, is negative — for compression
W;_, — J P(!V (k])
1
F The work associated .
: : The moving
1 with a moving boundsry
_ boundary is called
| ﬂ A gas does a boundary work. l ﬂ
l differential
A7 ds amount of work . _\_ _______
““““““ ¥ oW, as it forces | :
I\TITYIT I the piston to : |
P move by a : GAS :
| |
| I
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The area under the process
curve on a P-V diagram
represents the boundary work.

Area=A=J

|

2 2
dA = J P dV
1

The boundary
work done
during a process
depends on the
path followed as
well as the end
states.

The net work done
during a cycle is the
difference between
the work done by
the system and the
work done on the
system.
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Boundary work for a constant-volume process

A rigid tank contains air at 500 kPa and 150°C. As a result of heat transfer

to the surroundings, the temperature and pressure inside the tank drop to
65°C and 400 kPa, respectively. Determine the boundary work done during

this process.

P, kPa !
.'!'LIH. I'[E'ﬂ.l. .;'[:H:] _______ —& I
P, = 500 kPa b
T, = 150°C |
Fy = 400 kFa 400 f—————— — 2
T2 = 65°C

=



Boundary work for a constant-pressure process

A frictionless piston—cylinder device contains 10 Ibm of steam at 60 psia
and 320°F. Heat is now transferred to the steam until the temperature
reaches 400°F. If the piston is not attached to a shaft and its mass is con-
stant, determine the work done by the steam during this process.

P psia

I Fy= 6l psia
& ———* .

Area = wy

—————————— 2

3
I

=]
=
=
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v, = 74863 v, =B.3548 v fit’/Ibm




Polytropic, Isothermal, and Isobaric processes

P = CV ™" Polytropic process: C, n (polytropic exponent) constants

2 2 —n+1 —n+1 :
V. -V P,, — P,V
W, = Jde’Z J CU-" gy = 22 1 _ Vs 1V1 Polytropic
1 1 —n + 1 | —n process
mR(T, — T)
W, = Polytropic and for ideal gas

|l — n

2 2
V. _
W, = J PdV = J CUT dy = Pvm(z) Whenn =1
1 1 1/ (isothermal process)

2 2
W, = J pPdV =P, J dV = Py(V, = V) Constant pressure process
| |

What is the boundary
work for a constant- 1
volume process? |n

P \Vi'= P,V3

PV" = const.

Schematic and e

P-V diagram for | PV*=C = const.
a polytropic
process.
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Boundary work for a constant-pressure process

A piston—cylinder device contains 0.05 m? of a gas initially at 200 kPa. At
this state, a linear spring that has a spring constant of 150 kN/m is touching
the piston but exerting no force on it. Now heat is transferred to the gas,

causing the piston to rise and to compress the spring until the volume inside
the cylinder doubles. If the cross-sectional area of the piston| is 0.25 m?,

determine (3) the final pressure inside the cylinder, (b) the total work done by
the gas, and (c) the fraction of this work done against the spring to
compress it.

k=150 kN/m

/ P, kPa
g =

320

2000 -

A=025m?

Py =200 kPa
v, = 0.05 m?

Heat



ENERGY BALANCE FOR CLOSED SYSTEMS

Ein o Euul - A system (kl)
| . ' — Energy balance for any system
Net energy transfer Change in internal, Kinetic, ;
by heat, work, and mass potential, etc., energies UndergOlng any process
E.—E, = dE e/ dl kW
. 1 (_.l|lJ \ ! \l .|||/ ) ( ) Energy balance
Rl.ut:c QI‘ net It;'l‘lt't'l'}_.fv\_-" t|':|nxfcr ) RlIL (TI\CI_“”F}:C i.n hintt.:n.]:_ll._ | in the rate form
by heat, work, and mass kinetic, potential, etc., energies

The total quantities are related to the quantities per unit time is
Q=QAt, W=WAt, and AE = (dE/dt)At (k)

_ Energy balance per
€in — €out — Aexyxtem (kJ/kg) . gy . p
unit mass basis
Energy balance in
5E"ln - 5‘Eout — dEs}_-‘xtem or 5ein - 5601.|t = de 9

yem Hifferential form

Energy balance

‘/Vnet.om — Qnet.in or ‘/Vnet.out — Qnet.in for a CyCIe



. . _ i - Q — Qnet,in — Qin o Qout
anl.in o Wl(.‘l.(_)lll — ‘AE\'\_-‘SICI]] Ol Q o W — AE
W = Wnet,out o Wout o Wir

Energy balance when sign convention is used (i.e., heat input and work
output are positive; heat output and work input are negative).

P

1

General Q- W=AE

Stationary systems Q- W =AU

Per unit mass g—w = Ae

Differential form &g — dw = de

v Various forms of the first-law relation

For a cycle AE = 0, thus Q = W. for closgd systems when sign
convention is used.

The first law cannot be proven mathematically, but no process in nature is known
to have violated the first law, and this should be taken as sufficient proof.




Energy balance for a constant-pressure

expansion or compression process

General analysis for a closed system

undergoing a quasi-equilibrium

constant-pressure process. Q is to the

system and W is from the system.

Ein Enul
—_—
Net energy transfer

by heat, work, and mass

0 0
Q— W= AU+ AKE + APE

AE

Change in internal, kinetic,
potential, etc., energies

system

Q — Woher — W, = U, — U,

Q - vvolhcr — P()(uz -

Q — vvulhcr = ([]2 + PQVE) - (UI + PIVI)

H=U+ PV

V) = U, — U,

Q - Wnlhcr — HZ - Hl

For a constant-pressure expansion
Or compression process:

AU +W, = AH

An example of constant-pressure process

[ [ e.in Qout

W, = AU

‘/Ve.in o Qout — AH — n?(h'2 - kl)

m=25g
P,= P, =300 kPa

Sat. vapor

5 min

N0 =37K

out

P, kPa'

300

11

\/
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SPECIFIC HEATS

Specific heat at constant volume, c,: The energy required to raise
the temperature of the unit mass of a substance by one degree as

the volume is maintained constant.

Specific heat at constant pressure, c,: The energy required to raise
the temperature of the unit mass of a substance by one degree as

the pressure is maintained constant.

m=1Kkg
Al=1°C
Specific heat = 5 kJ/kg -°C

- Constant-
volume and
5KJ constant-
Specific heat is the energy ~ Pressure specific
required to raise the heats c, and c,
temperature of a unit mass (values are for
of a substance by one helium gas).

degree in a specified way.

\/ = constant
m=1Kkg
AT = 1°C

kJ
cy,=3.12 kg-°C

3.12 kJ

P = constant

m = 1kg
ATP="1°C
¢, =3.19

kJ
kg-°C

5.19kJ

12



« The equations in the figure are valid for any substance undergoing any
process.

° ¢, and c, are properties.

* ¢, Isrelated to the changes in internal energy and c, to the changes in
enthalpy.

« A common unit for specific heats is kJ/kg - °C or kJ/kg - K. Are these units

identical?
o ul
AIR AIR ¥
" :(@)
1%
m=1Kkg m=1Kkg oT), N
= the change in internal energy
300 —» 301 K 1000 — 1001 K with temperature at
constant volume
> | ) | 3
Formal definitions of c, and c,.
0.718 kJ 0.855 kJ 3 ¥
The specific heat of a substance c = (@)
changes with temperature. 7-\dT),
= the change in enthalpy with
True or False? temperature at constant

Cp Is always greater than c,. pressure




INTERNAL ENERGY, ENTHALPY,
AND SPECIFIC HEATS OF IDEAL GASES

A

Thermometer h=u-+ Pv
h=u+ RT
Pv = RT
||
WATER u=u(T) h=h(T)
I du = c,(T)dT dh = c,(T)dT

Au=u, —u, = J c,(T) dT
!

7 \

AIR Evacuated
(high pressure)
Joule showed
using this
experimental
apparatus that
u=u(T)

Ah

h2 — hl — J C/)(T) dTl
1

Internal energy and
enthalpy change of
an ideal gas

For ideal gases,
u, h, c,, and c,
vary with
temperature only.

14



At low pressures, all real gases approach
ideal-gas behavior, and therefore their
specific heats depend on temperature only.

The specific heats of real gases at low
pressures are called ideal-gas specific
heats, or zero-pressure specific heats, and
are often denoted c,, and c,,.

C

“p0
kJ/kmol - K

60

S0+

|deal-gas
constant-
pressure
specific heats
for some

Ar, He, Ne, Kr, Xe, Rn gases (see
2r Table A—2c

: ' i for c,
1000 2000 3000 c
Temperature, K equatlonS).

40

30}

u and h data for a number of
gases have been tabulated.

These tables are obtained by
choosing an arbitrary reference
point and performing the
Integrations by treating state 1
as the reference state.

AIR

T, K u, kJ/kg h, kJ/kg
0 0 0

300 214.07 300.19
310 221.25 310.24

In the preparation of ideal-gas
tables, 0 K is chosen as the
reference temperature.

15



Internal energy and enthalpy change when c, 4

P
specific heat is taken constant at an o
Approximation
average value
Uy — Uy = Cyave(lh — T) Actual ,

| | (kJ/kQ) |

/12 o hl — C/J.}.Zl\-"g (73 o 7] ) ST o | :

1 | l

| | |

| | |

| ' |

| | |

| : |

l
| ! | <)
T, T T T

avg .
AIR For small temperature intervals, the
/= constant AIR specific heats may be assumed to vary
T, =20C P = constant linearly with temperature.
0, |T,=30C o1 1= 20°C
» o P, =30C ¥ The relation A u = ¢, AT

is valid for any kind of
Au=i, AT Au=c,AT process, constant-

=7.18 kJ/kg =7.18 kJ/kg volume or not.
16



Three ways of calculating Au and Ah

1. By using the tabulated u and h data.
This Is the easiest and most
accurate way when tables are
readily available.

l\d—‘—’
{

2. By using the c, or c, relations (Table
A-2c) as a function of temperature
and performing the integrations. This 2

Au =J
1

Au=u,—u, (table)

IS very inconvenient for hand c, (T)dT
calculations but quite desirable for

computerized calculations. The

results obtained are very accurate. Au =cy 4y AT

3. By using average specific heats.
This is very simple and certainly very
convenient when property tables are
not available. The results obtained Three ways of calculating Au.
are reasonably accurate if the
temperature interval is not very
large.

\_) \J/

17



Specific Heat Relations of Ideal Gases

h=uy -+ RT ’ The relationship between c, ¢, and R
dh = du + RdT } —> (T C TR (kJ/kg - K)
dh=c,dT and du=cdT | On a molar basis
¢, =c, + R, (kJ/kmol - K)
AIR at 300 K | — I Specific

¢ heatratio
¢, =0.718 kl/kg - K v

' > = 1.005 kl/ke =g
= 0.287 kJ/kg - }(” : ific ratio varies wi
R=0.287kl/kg - K - The specific ratio varies with

temperature, but this variation is
very mild.

* For monatomic gases (helium,
argon, etc.), its value is essentially

or

¢, =20.80 kJ/kmol - K

¢, =29.114 kJ/kmol - K
R, =38.314 kJ/kmol - K f

constant at 1.667.

- Many diatomic gases, including air,
have a specific heat ratio of about
1.4 at room temperature.

The c, of an ideal gas can be
determined from a knowledge of
c, and R.

18



INTERNAL ENERGY, ENTHALPY, AND

SPECIFIC HEATS OF SOLIDS AND LIQUIDS

Incompressible substance: A substance whose specific volume
(or density) is constant. Solids and liquids are incompressible

substances.

LIQUID
Vv, = constant

SOLID
V, = constant

The specific volumes of
incompressible substances
remain constant during a
process.

IRON
25°C
c=cCy=¢p

= 0.45 kJ/kg - °C

The ¢, and c, values of
iIncompressible substances are
identical and are denoted by c.

19



Internal Energy Changes
du = ¢, dT = c(T)dT

2
Au=u, —u, = J c(T)dT (kJ/kg)
I

Au = coo(h — Th) (kJ/kg)

Enthalpy Changes

h=u+ Pv 0
dh = du + vdP + Pdv = du + vdP

Ah = Au + VAP = c,,, AT + v AP (kJ/kg)

For solids, the term v AP is insignificant and thus Ah = Au = ¢, AT. For
liquids, two special cases are commonly encountered:
1. Constant-pressure processes, as in heaters (AP = 0): Ah = Au = ¢, AT
ar'e
2. Constant-temperature processes, as in pumps (AT = 0): Ah = v AP

(p —PoarT ) The enthalpy of a

haw — h @ + % a
@rT = f@eT T Vf@T compressed liquid

A more accurate relation than e pr="ve r

20
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FLOW WORK AND THE
ENERGY OF A FLOWING FLUID

Flow work, or flow energy: The work (or energy)
required to push the mass into or out of the control
volume. This work is necessary for maintaining a
continuous flow through a control volume.

F = PA
Wflow — FL — PAL — PV (kJ)
Wilow — Pv (I&J/kg)

S ——

P

Wilow >

|
|
|
|
| CV
|
|
|
|

(e o o—— —— —— — —

| aY

/A [ : (b) After entering
e I
v o | /A
I
— H
F “ | 7—
s CV | F
| | —-amy P
I —
I ‘—‘__
; | I &
BLRATY ——— 4 In the absence of acceleration, the force

piston
Schematic for flow work.

applied on a fluid by a piston is equal to the
force applied on the piston by the fluid.,,



Total Energy of a Flowing Fluid
2 The flow energy is
e=u+ ke +pe=u-+ S + ¢z (kJ/kg)  automatically taken
— care of by enthalpy.
O =Pv+e=Pvu+ (u+ ke + pe) h=zu+Ppy Infactthisis the
main reason for
V2 defining the
O =h+ke+pe=~hn-+ Y + 97 (kJ/kg)  property enthalpy.

Kinetic Kinetic
energy energy energy

Flowin
& 9=Pv+u+ —+ gz

Nonflowing o =y _|. -— .|. gz fluid
Internal Potential
energy energy

fluid
Internal Potential
energy energy

The total energy consists of three parts for a nonflowing fluid and four parts for a
flowing fluid. 23




Energy Transport by Mass

V2
Amount of energy transport:  E .. = ml = m(/'z i ¢ ) (kJ)
A : S V?
Rate of energy transport: E .. = ml = m(/'z + -t g:) (kW)
[=——~~"""~""7~ When the kinetic and potential energies

) : CV of a fluid stream are Qegligible
mi9kg/s | ’ m 0 Emass = mh Emass = mh
9,,kJ/kg b

| kW) -

( When the properties of the mass at

The product M,&, is the energy
transported into control volume by
mass per unit time.

each inlet or exit change with time
as well as over the cross section

Ein‘m:m - ‘ Hi 5-}”;‘ - ‘ (/3; + TJ + gZ,-) (3.?”‘;

“m; m;

24



ENERGY ANALYSIS OF STEADY-FLOW
SYSTEMS

V& V&
Qnet,in +Wshaft,net,in = Zm[h +7 + gZ] _Zm(h + 7 T gzj

out

* For steady flow, time rate of change of the
energy content of the CV Is zero.

* This equation states: the net rate of energy
transfer to a CV by heat and work transfers
during steady flow is equal to the difference
between the rates of outgoing and incoming
energy flows with mass.



ENERGY ANALYSIS OF STEADY-FLOW

SYSTEMS
- |

LN

\

i 4
RSB

" I
WA, 353V,
~/,'_/"1, B

Lk “‘

Many engineering systems such
as power plants operate under
steady conditions.

Under steady-flow conditions,
the fluid properties at an inlet
or exit remain constant (do not
change with time).

Control
volume

mcy = constant

Ey = constant

Under steady-flow conditions, the mass
and energy contents of a control volume
remain constant.

R [l bbbl | S
| 2
h] [ : 1’12
|
I Control :
: volume |
|
I =
: \:: ms
l\ _!I'_ h’;




Mass and Energy balances Heat Electric

heating

for a steady-flow process 0% Qougy  clement

my = n

_|| Win
R— |
_ . Hot 1B
2m=2m (kg/s) waer |
in out e : |
. | cv |
ny, = ms, Mass A water | (Hot-water tank) :_ #
heater in | N
prlAl — p2V2A2 balance Steady I — | Cotld
water
operation. in

0 (steady)
Energy E. —E., — AE o/ dt e =0
balance :

J

o
Rate of net energy transfer Rate of change in internal, kinetic,
by heat, work, and mass potential, etc., energies
Ein o Eoul_ (k W )
Rate of net energy transfer in Rate of net energy transfer out
by heat, work, and mass by heat, work, and mass
V2 V 2
0y, + Wiy + Em(h + gz) = Qo + Wou + Em(h t gz)
in : out :
S — - _—
—~— —_——

for each inlet for each exit



Energy balance relations with sign conventions
(i.e., heat input and work output are positive)

L V? V:
0—- W= Em(h + 74— gz) — Erh(h + 5 + gz)

out in

for each exit for each inlet

. . , Vi— Vi 2 &
Q—W=m|h, — h + “2 + g(z — 21)
. J _Nm _ m) m _ m~
Vi— Vi —=—=(kg 2) 4
qg—w=h, — h "‘T"‘S(Zz_zl) kg g s“/ kg s
q—w=h—h g=Q0m w= W 5
. : Btu _ ft
when kinetic and potential energy Also, _— 25,037 —2)
changes are negligible > >
% &
foow | o
Some energy unit equivalents

 shaft work and electrical
| work are the only forms of

———
_\/WV\J C : Under steady operation,
)

: work a simple compressible
Wan system may involve. -




SOME STEADY-FLOW ENGINEERING DEVICES

Many engineering devices operate essentially under the same conditions

for long periods of time. The components of a steam power plant (turbines,
compressors, heat exchangers, and pumps), for example, operate nonstop for
months before the system is shut down for maintenance. Therefore, these
devices can be conveniently analyzed as steady-flow devices.

! 5-Stage
Combustor &

4 e LI?C Bleed Low Pressure

5-Stage Air Collector Fuel System 2-Stage Taibine

Low Pressure 14-Stage Manifolds High Pressure

CI?I;T(‘:prCSSOY High Pressure Turbine

( ) Compressor
Cold End o HOTRNC
Drive Flange  \ N eSO, Drive Flange

A modern land-based gas turbine used for electric power
production. This is a General Electric LM5000 turbine. It
has a length of 6.2 m, it weighs 12.5 tons, and produces
55.2 MW at 3600 rpm with steam injection.

% V,  Ake
m/s m/s Kkl/kg
0 45 |
50 67 |
100 110 |
200 205 1
500 502 1

At very high velocities,
even small changes in
velocities can cause
significant changes in
the kinetic energy of the
fluid.

29




Nozzles and Diffusers

R
/
/
/
/
/
/
/
/
/
/
/

SR

_

- Nozzle ——V, >V

\

-

\

Y*_
\
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \

e

V, —— Diffuser —+=V, <KV,

~
3
~
~

/

/
baaaainiia

Nozzles and diffusers are
shaped so that they cause large
changes in fluid velocities and
thus kinetic energies.

Nozzles and diffusers are commonly
utilized in jet engines, rockets,
spacecraft, and even garden hoses.

Anozzle is a device that increases
the velocity of a fluid at the expense
of pressure.

A diffuser is a device that increases
the pressure of a fluid by slowing it

down.

The cross-sectional area of a nozzle
decreases in the flow direction for
subsonic flows and increases for
supersonic flows. The reverse is true
for diffusers.

Energy
balance for
a nozzle or

diffuser:

(since Q = 0, W = 0, and Ape = 0)

.

E

1n

V2
2

D Eout

y

V3
2

)

30




Turbines and

Compressors
Gour = 16 KI/kg
T~

[\ ~ ~

w P, = 600 kPa

7}‘ L =400 K
AIR K

|

I

|

l I

| —y
| =0.02 ke/s EC—
| p.

I

I

P, = 100 kPa
T,=280 K

I’/I

Energy balance for the
compressor in this figure:

E in — Eout

o+ mh, = Q. + mh,

(since Ake = Ape = 0)

Turbine drives the electric generator In
steam, gas, or hydroelectric power plants.

As the fluid passes through the turbine,
work is done against the blades, which
are attached to the shaft. As a result, the
shaft rotates, and the turbine produces
work.

Compressors, as well as pumps and
fans, are devices used to increase the
pressure of a fluid. Work is supplied to
these devices from an external source
through a rotating shatt.

A fan increases the pressure of a gas
slightly and is mainly used to mobilize a
gas.

A compressor is capable of compressing
the gas to very high pressures.

Pumps work very much like compressors
except that they handle liquids instead of
gases.

31



Throttling valves

-
0

(a) An adjustable valve

A

(b) A porous plug

(c) A capillary tube

Throttling valves are any kind of flow-restricting devices
that cause a significant pressure drop in the fluid.

What is the difference between a turbine and a
throttling valve?

The pressure drop in the fluid is often accompanied by a
large drop in temperature, and for that reason throttling
devices are commonly used in refrigeration and air-
conditioning applications.

Energy
balance

h, = h,

u, + Pv, = u, + P,v,

Internal energy + Flow energy = Constant

Throttling Throttling
value valve
uy =94.79 kJ/kg u, = 88.79 kl/kg
IDEAL T, T,=T, P v, =0.68 klJ/kg P, Vv, = 6.68 kl/kg

GAS h

| h2zhl

(h, = 95.47 kJ/kg) (h, = 95.47 kl/kg
During a throttling process, the enthalpy

The temperature of an ideal gas does

not change during a throttling

(h = constant) process since h = h(T).

of a fluid remains constant. But internal
and flow energies may be converted to

each other.
32



Mixing chambers

In engineering applications, the section
where the mixing process takes place is
commonly referred to as a mixing

chamber.
: N\
N
/
— Cold
water
Hot T-elbow
Water

The T-elbow of an ordinary shower
serves as the mixing chamber for the
hot- and the cold-water streams.

T,=60°C

m,

\ mll 1
K ,
e Mixing :_

! chamber |
| |
—'| p=140kPa [~
/ .- _____
T,=10°C Ty= 43°C
m-

Energy balance for the
adiabatic mixing chamber in
the figure is:

Ein — Eout

(since Q = 0, W = 0, ke = pe = 0)

33



H eat ex C h an g e r S Flui\d Ii /CV boundary Flui\d ]T /CV boundary

Heat exchangers are

e e e e e e e e S e e e

de_wces where two moving | u .. R T - [
fluid streams exchange heat : o T
e 5 G ca
without mixing. Heat B i \
exchangers are widely used | |
In various industries, and (a) System: Entire heat (b) System: Fluid A (Qcy # 0)
. ; haneer =0
they come in various il el _ _
designs The heat transfer associated with a heat
exchanger may be zero or nonzero depending on
F‘;gch how the control volume is selected.
| Water
Mass and energy 1508
Heat balances for the adiabatic 30851’11
¥ . heat exchanger in the
S 20°C figure is: &
» qure is: " ) i
Heat

A heat exchanger
can be as simple as
two concentric pipes.

1\

35°C

ms — nmy — Mp

S 70°C
My = 1My = Myl vp, :—J>

: : i 35°C
Ein — Eout _I |
I’hlh] + 7’;13]13 — 7’;12]12 + W.l4h4 2@(:




Pipe and duct fow b |

The transport of liquids or gases in RS B S e R
pipes and ducts is of great importance : o
In many engineering applications. F_IO\_N S P — |
through a pipe or a duct usually satisfies L 1

the steady-flow conditions.

Wsh
Surroundings 20°C Oou Pipe or duct flow may involve more than
‘ one form of work at the same time.
A A . ] |
| 70°C |
_:_> Hot fluid _:* Qo= 2?—0—\)! ————— "
T ! Energy balance Wl . _, |
Heat losses from for the pipe flow o E «
a hot fluid shown in the : |
flowing through : : figure Is | W, . =15kwW
an uninsulated E. =E_, P—
pipe or ductto | . , ! ‘+—s
the cooler We,in + mh, = Q,, + mh, =100k
environment '~~———T—~~-J
may_ t_)e el em Qout — me(T2 - T]) \/1 150 m*/min
significant.
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ENERGY ANALYSIS OF STEADY-FLOW
SYSTEMS

* For single-stream

,7-1(,1].,.%+gzl) devices, mass flow rate
I e \ .
\\ni’ . IS constant.
(% Fixed N
/7 control \ V22 _V12
{ volume l qnet,in + Wshaft,net,in = h2 — hl + T +0 (22 _ Zl)
\ > /
i //\ W +ﬂ+vi+ z _i+\/_22+ Z, +(Uy = Uy = Oy )
Out/ —_— /. | shaft,net,in ,01 2 g 1~ pz 2 g 2 2 1 qnet,in
Qnet in T Wshaft, net in 2 2
—_2

1 1 2
: V% — T +0Z, + Wpump - + + 02, + Wiyrpine T Cmech loss
m|h,+ +82, o 2 , 2



ENERGY ANALYSIS OF STEADY-FLOW
SYSTEMS

* Divide by g to get each term in units of length

2 2
h +V1 +2,+h i +V2

+2,+ +h
plg 2g pump Zg Zg hturblne L

« Magnitude of each term is now expressed as an
equivalent column height of fluid, i.e., Head

Control volume Woitbine




The Bernoulli Equation

- |f we neglect piping losses, and have a system without pumps
or turbines

Steady flow along a streamline
™,

e

(P+dP)dA -~

2 2
i +V1 +27, = i +V2
/9 29 P9 29

ds + Z 2

dz

dx

- X

« This is the Bernoulli equation

* It can also be derived using Newton's second law of motion
(see text, p. 187).

- 3 terms correspond to: Static, dynamic, and hydrostatic head
(or pressure).



HGL and EGL

* It is often convenient
to plot mechanical
energy graphically

o NN using heights.

v2/2¢ [N . .

RS \, * Hydraulic Grade Line

N
HGL \I \\\\: ‘5/2(8’ g P
N1 i HGL =—+7
Il Diffuser 2 3 pg
v Arbitrary ref plane (z =0)

Ly yAbitayrefoeceplne@=0) Energy Grade Line
(or total energy)

2
EGL = P +V +Z

P9 29




The Bernoulli Equation

« The Bernoulli equation
IS an approximate relation
Bernoulli equation valid between pressure,

——

P velocity, and elevation

\
’—//&/\\s and is valid in regions of
ek \ steady, mcompre_ss_,lble
= N~ —+—__  flowwhere net frictional
e

b e forces are negligible.
V

Bernoulli equation not valid Equation is useful in flow
regions outside of
boundary layers and
wakes.




The Bernoulli Equation

 Limitations on the use of the Bernoulli Equation
v Steady flow: d/dt = 0

v Frictionless flow

v"No shaft work: Wy,,=Wirpine=0

v Incompressible flow: p = constant
v"No heat transfer: q,q;;,=0

v Applied along a streamline (except for irrotational
flow)



Mechanical Energy

 Mechanical energy can be defined as the form of
energy that can be converted to mechanical work
completely and directly by an ideal mechanical device
such as an ideal turbine.

« Flow P/p, kinetic V?/g, and potential gz energy are the
forms of mechanical energy e, ..,.= P/p +V?/g + gz

* Mechanical energy change of a fluid during
Incompressible flow becomes

P-P V-V
Aemech: 2p 1+ : 2 - +g(22_zl)

* |n the absence of loses, Ae
supplied to the fluid (4e .
(Aemech<o)-

mech F€presents the work
>OC) or extracted from the fluid
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example

Consider a river flowing toward a lake at an average
velocity of 3 m/s at a rate of 500 m3/s at a location 90 m
above the lake surface. Determine the total mechanical
energy of the river water per unit mass and the power
generation potential of the entire river at that location.

RIVer s 1 m/s

00 m

3-6



Efficiency

Transfer of e, IS usually accomplished by a rotating
shaft: shaft work

Pump, fan, propulsion: receives shaft work (e.g., from
an electric motor) and transfers it to the fluid as
mechanical energy

Turbine: converts e, Of a fluid to shaft work.

In the absence of irreversibilities (e.g., friction),
mechanical efficiency of a device or process can be
defined as e c

mech,out —1— mech,loss

77mech — E E

mech,in mech,in

If 70cn < 100%, losses have occurred during conversion.



Pump and Turbine Efficiencies

Fan

—

SOW\Ll— i = 0.50 ke/s
O =0

—_—

R —

e

V,=0, V=12 m/s
21=2
P =P,
Menech. fan = AE{mech, fluid -
| Wshafl, in Wshal‘l, in
_(0.50 kg/s)(12 m/s)?/2
- 50 W

mV3/2

=0.72

T)turbinc = 0'75 ngcncrat()r = 0.97

T7turbine—gen = 771urbinengenemlor

=0.75 % 0.97

=0.73

In fluid systems, we are usually interested in
Increasing the pressure, velocity, and/or
elevation of a fluid.

In these cases, efficiency is better defined as
the ratio of (supplied or extracted work) vs. rate
of increase in mechanical energy

. AEmech,fluid
M oump = W
shaft,in
n . Wshaft,out
turbine ~ :
‘AEmech, fluid ‘

Overall efficiency must include motor or
generator efficiency.
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Example:

In a hydroelectric power
plant, 120 m3/s of water
flows from an elevation of
100 m to a turbine, where

electric power IS |

generated. The overall
efficiency of the turbine—
generator is 80 percent.
Disregarding frictional
losses In piping, estimate
the electric power output
of this plant.

3-6

Generator Turth \
= 80% '

T rbine—gen




Example:

A garden hose attached with a nozzle is used to fill a 20-gal
bucket. The inner diameter of the hose is 1 in and It reduces

to 0.5 in at the nozzle exit. If the average velocity in the hose
IS 8 ft/s, determine:

(a) the volume and mass flow rates of water through the
hose

(b) how long it will take to fill the bucket with water, and
(c) the average velocity of water at the nozzle exit.



Example:

A well-insulated rigid tank contains 5 kg of a
saturated liquid—vapor mixture of water at 100 kPa. Initially,
three-quarters of the mass i1s in the liquid phase. An electric
resistor placed in the tank is connected to a 110-V source,
and a current of 8 A flows through the resistor when the
switch 1s turned on. Determine how long it will take to vapor-
ize all the liquid in the tank. Also, show the process on a T-v
diagram with respect to saturation lines.

H,0

\/ = constant




Example:

Water flows through a horizontal pipe at a rate of 1 gal/s. The
pipe consist of two sections of diameters 4 in and 2 in with a
smooth reducing section. The pressure difference between the
two pipe sections IS measured by a mercury manometer.
Neglecting frictional effects, determine the differential height of
mercury between the two pipe sections.

--'""x

.
| .\-\-.

\ |
A{T 4in 2 ill[—l'iil—li-
| A

I'.ﬂ ___,.'-"".-..-.-.
[L‘

4

e




Example:

The liquid in the Figure has a s = 0,85. Estimate the flow rate
from the tank for a) no losses and b) pipe losses
h, =4.5V?/(29).

Air:
p = 20 Ibf/in* abs
;" . p, = 14.7 Ibf/in® abs
S D=1in
I _r_ =\




Example:

Air enters an adiabatic nozzle steadily at 300 kPa, 200°C, and
30 m/s and leaves at 100 kPa and 180 m/s. The inlet area of
the nozzle is 80 cm2. Determine:

(a) the mass flow rate through the nozzle,

(b) the exit temperature of the air, and

(c) the exit area of the nozzle

P, =300 kPa
T, =200°C AIR P. =100 kPa
V=30 m/s V= 180 m/s

A | = 80 cm °



Example:

A hot-water stream at 80°C enters a mixing chamber with a
mass flow rate of 0.5 kg/s where it is mixed with a stream of
cold water at 20°C. If it is desired that the mixture leave the
chamber at 42°C, determine the mass flow rate of the cold-
water stream. Assume all the streams are at a pressure of
250 kPa.

H.O
(P =250 kPa)

T, =42°C




Example:

An oll pump is drawing 35 kW of electric power while
pumping oil with p=860 kg/m?3 at a rate of 0.15m3/s. The inlet
and outlet diameters of the pipe are 8 cm and 12 cm,
respectively. If the pressure rise of oil in the pump Iis

measured to be 450kPa and the motor efficiency is 80%,
determine the mechanical efficiency of the pump.




MOMENTUM ANALYSIS



NEWTON'S LAWS

Newton’s laws: Relations between motions of bodies and the forces
acting on them.

Newton’s first law: A body at rest remains at rest, and a body in
motion remains in motion at the same velocity in a straight path when
the net force acting on it is zero.

Therefore, a body tends to preserve its state of inertia.

Newton’s second law: The acceleration of a body is proportional to
the net force acting on it and is inversely proportional to its mass.

Newton’s third law: When a body exerts a force on a second body,
the second body exerts an equal and opposite force on the first.

Therefore, the direction of an exposed reaction force depends on the
body taken as the system.

— —

i . — . dV — dmV)
Newton’s second law: F=ma=m =
dt dt

55



Linear momentum or just the momentum of the body: The product of
the mass and the velocity of a body.
Newton’s second law is usually referred to as the linear momentum

equation.

=l

=
mV

Linear momentum is the
product of mass and velocity,
and its direction is the
direction of velocity.

Conservation of momentum principle: The
momentum of a system remains constant
only when the net force acting on it is zero.

Net force

F=md=m df} = d(mv)

dt dt

Rate of change
of momentum

Newton’s second law is also

expressed as the rate of change of

the momentum of a body is equal

to the net force acting on it. 56



The counterpart of Newton's second law for rotating rigid bodies is
expressed as M = Ia, where M is the net moment or torque applied on the
body, I is the moment of inertia of the body about the axis of rotation, and &
is the angular acceleration. It can also be expressed in terms of the rate of
change of angular momentum dH /dt as

do  dda) dH

Angular momentum equation: M=lIla=1 = = (13-2)
dt dt dt
: dw, dH,
Angular momentum about x-axis: M,=1, P
dr ar

The conservation of angular momentum
Principle: The total angular momentum of a
rotating body remains constant when the
net torque acting on it is zero, and thus the
angular momentum of such systems is .
conserved. M=1d=1 T

i _ d{d) _ dH

The rate of change of the angular
momentum of a body is equal to o a?ﬁf;ﬂ:f:mm
the net torque acting on it. 5




CHOOSING A CONTROL VOLUME

A control volume can be selected as any arbitrary
region in space through which fluid flows, and its

bounding control surface can be fixed, moving, and

even deforming during flow.

Many flow systems involve stationary hardware firmly
fixed to a stationary surface, and such systems are
best analyzed using fixed control volumes.

When analyzing flow systems that are moving or
deforming, it is usually more convenient to allow the

control volume to move or deform.

In deforming control volume, part of the control

surface moves relative to other parts.

Fixed control volume

(a)

Deforming
control volume

(c)

I _________ __}_—1
. |
| /| I
' _.::‘
| — 4
I ‘.-v:ﬁ: [ e Ei: ------- St -:_,.-_—E:::TJI—F
| - — I
I |
| Movine control v S
oving control volume
_—__‘-_". ______ J L.ll.r-
Ecv
X —
— “ v 58



FORCES ACTING ON A CONTROL VOLUME

The forces acting on a control volume consist of

body forces that act throughout the entire body of the control volume (such as
gravity, electric, and magnetic forces) and

surface forces that act on the control surface (such as pressure and viscous
forces and reaction forces at points of contact).

Only external forces are considered in the analysis.

Total force acting on control volume: 2 F = Z Frogy T Z Fourface

Control volume (CV) — l

- ,-"II

A
dA K The total force acting on a control

,-"-"-.n.___._.—-._“

7 7 volume is composed of body forces
;- “hwmegnd surface forces; body force is
N - . shown on a differential volume

=k

element, and surface force is shown

Control surface (CS) — on a differential surface element.
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The most common body force is that of gravity, which exerts a downward force
on every differential element of the control volume.

_:'.
— . . . . —
Gravitational force acting on a fluid element: dF geaviey = pg dV
. . . . . —3 -
Gravitational vector in Cartesian coordinates: g=—gk

q
Total body force acting on control volume: 2 Fiogy =

IJ.E h'rl'.r"ll = ”-FI:"L'F._’?
“CY

]F}J;{,-;'_Ir__”_;{-,:*; 2 F = z !F';Jr;nil} + 2 F pressure + E f-'-i':-.'uLI:c

+ D F

other

total force body force aurface forces

dy

Surface forces are not as simple to
analyze since they consist of both normal
d= g and tangential components.
Normal stresses are composed of
- pressure (which always acts inwardly
e s normal) and viscous stresses.
le Shear stresses are composed entirely of

VISCOUS stresses.

o
=

“

=

ﬂthDd}" = dFLT]'U‘-’i[}’ = pg {;'rllv"r

h The gravitational force acting on a differential
> volume element of fluid is equal to its weight; the
axes have been rotated so that the gravity vector

X, 0 acts downward in the negative z-direction.
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A common simplification in the application of Newton’s laws of motion is to
subtract the atmospheric pressure and work with gage pressures.

This is because atmospheric pressure acts in all directions, and its effect cancels

out in every direction.

This means we can also ignore the pressure forces at outlet sections where the
fluid is discharged to the atmosphere since the discharge pressure in such cases
IS very near atmospheric pressure at subsonic velocities.

=

.

~ P, (gage)

With atmospheric With atmospheric
pressure considered pressure cancelled out

Atmospheric pressure acts in all
directions, and thus it can be ignored
when performing force balances since
its effect cancels out in every direction.

| (= —
Bolts —, CVB |
:E}:::::ﬂ Spigot

s h | | |
W fancet
Out

X
Cross section through a faucet
assembly, illustrating the importance of
choosing a control volume wisely; CV B
IS much easier to work with than CV A.
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THE LINEAR MOMENTUM EQUATION

Newton’s second law for a system of mass m subjected to a net force F is
expressed from Eq. 14-1 as
%
- . dvV d -
E F=ma=m—=—(mV) (13-9)
drt dt
% - - & *

where mV 1s the linear momentum of the system. Noting that both the den-
sity and velocity may change from point to point within the system, Newton’s
second law can be expressed more generally as

dr]
¥s

— 1 [ —
S F = ‘—J pV dV (13-10)

where pV dV 1s the momentum of a differential element ¢V, which has mass

om = pdV.

Newton’s second law can be stated as the sum of all external forces acting on a
system is equal to the time rate of change of linear momentum of the system. This
statement is valid for a coordinate system that is at rest or moves with a constant

velocity, called an inertial coordinate system or inertial reference frame.
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dmVyy, 4 |
=

pﬁdb"-l— J pi-_”}(‘r_;r*ﬁ)dﬂ

dt cv Cs
i = d [ = ==
General: E F=— pV dV + J pV(V_ -mdA - —
di Jey Ics V.=V = Vcs
The sum of all The time rate of change The net flow rate of
external forces | = | of the linear momentum | + | linear momentum out of the
acting on a CV of the contents of the CV control surface by mass flow
. — T F - {'lr | - y [ - _- —
Fixed CV: N F=— pV dV + pV(V -n)dA
~ dt
oV ’CS
dB.,, d .
d =?J II'.i'-giI I:flu"l +I f"b[_ ;‘R’]d-“ﬂl
! " ey €S
F‘g:’"v b=V b=V The linear momentum equation
l is obtained by replacing B in
1 ¥

. the Reynolds transport theorem by
dimV)yys iJ oV dv +j VOB dA the momentum mV, and b by the
¥ .
dt ar Joy s momentum per unit mass V.
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(Pressure
force)

The momentum equation is
commonly used to calculate the

t(Rmumn force) forces (usually on support
systems or connectors) induced
An 180° elbow supported by the ground DAIERIOH
— ! [ — i — =
[n most flow systems, the sumof > F = {T || pV dV + || pV(V - i) dA
it )., -
forces SF consists of w eights, “ oy ‘cs

pressure forces, and reaction forces.
Gage pressures are used here since
atmospheric pressure cancels out on

all sides of the control surface. o



SF= J pV (V,-ida Steady Special Cases
cs flow

;ﬁ;r:J p{v n)ydA. = pV,,.A. Mass flow rate across
A, an inlet or outlet

[ — — —
J pV(V - 1)dA, = pViy A, ‘-f’m =mV,,. Momentum flow rate across
A a uniform inlet or outlet:

&

= — Lo \DU[
.V, 2.2 I*f L s, Iﬂ‘*’%-"
| v
\/ S
P Fixed N
7 control \
[ volume I

In a typical engineering

I% -ﬂ"j problem, the control volume
may contain many inlets and
iy V. ave. 1 Out?/? i\x outlets; at each inlet or outlet
m”"-'_:ug‘:l Out we define the mass flo_vv rate

1,V avg,4 and the average velocity.
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1 CV

Nozzle |

I—.- ri
— avg
L.
\
A
b

e

(a) (c)
(b)
Examples of inlets or outlets in which the uniform flow
approximation is reasonable:
(a) the well-rounded entrance to a pipe,
(b) the entrance to a wind tunnel test section, and
(c) a slice through a free water jet in air.
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Momentum-Flux Correction Factor, S

The velocity across most inlets and outlets is not uniform.
The control surface integral of Eq. 13—-13 may be converted into algebraic form using
a dimensionless correction factor g, called the momentum-flux correction factor.
= d [ = [ ==
E F = {T | pV dV + || pV(V -n)dA (13_13)
“CS

ar |{ -

2. E:{_j ( Jrﬂ dV + Zﬁ:m\ — Eg;‘:mﬁ,.ﬂ
i : )

i Jov ot I

. = = .
Momentum flux across an inlet or outlet: ’ pV(V -n)dA.= BPmV,,,
YA,

’ﬂ Pn, - 17)dA., p'r"'{ﬁ iVdA [ is always greater than or equal to 1.

l, , Sis close to 1 for turbulent flow and
B =— = — not very close to 1 for fully developed
Vv V AV :
MV avg PVYavg e Vave laminar flow.
” - j 1 [/ vV \2
Momentum-flux correction factor: L= j._ 1— dA.
Sl A, ';n'_-__-
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Steady Flow

Steady linear momentum equation: E F= E pmV — E pmV

Out 1

The net force acting on the control volume during steady flow is equal to the
difference between the rates of outgoing and incoming momentum flows.

_. = = Out

,Bgmgf’g In I-"" sl f:?_;n’a}f'_f;
\ <
\ i RN
P Fixed \
/ control

volume

~_ XF The net force acting on the control

jqf:,f”ﬁﬁf% Du S ataV . .
' 474 volume during steady flow is equal to
S F=YpnV — ¥ Bmv the difference between the outgoing
out in and the incoming momentum fluxes.
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Steady Flow with One Inlet and One Outlet

One inlet and

i : o o
M F=m(B,V,— BV

one outlet BV, Water flows €S
i ' r Alon X' . lI‘,l" - —/L _
2 Fio = m(BaVax = P coorginate —H"\;’ | =
| i BV,
=" ) : S " |
SN | o
‘... ______
S
@b Fixed ™ / (Reaction force)
f control \ R ) )
‘t v{:}lume f‘l FR r’fﬁ‘\\‘\rﬁlfﬂ ]i"'r]

b
-~ I;f t I-" \‘\:
_:]

\
= 7 \ BV,
Dut// .
@ P

ST e 117 T
Note: V, = V,even if [V;] = |Vl

_}Bz’?”’z . . The determination by vector
2LF = BV~ BiV1) addition of the reaction force on
A control volume with only one the support caused by a change
inlet and one outlet. of direction of water.
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Flow with No External Forces

— —
No external forces: 0 = ” + E pmV — E BmV

ot in

In the absence of external forces, the rate of change of the
momentum of a control volume is equal to the difference between
the rates of incoming and outgoing momentum flow rates.

dmV)ey — dVey i)y = Mo
{,I'f FTTCV dr na cv mC’."'-."’ﬂ

— = s
Finust = ﬁ?C‘JF = EBWV o EBFT}.‘V

in ot

The thrust needed to lift the space
shuttle is generated by the rocket
engines as a result of momentum

change of the fuel as it is accelerated
from about zero to an exit speed of
about 2000 m/s after combustion.



Example:

A constant-velocity horizontal water jet from a sta-
tionary nozzle impinges normally on a vertical flat plate that
1s held in a nearly frictionless track. As the water jet hits the
plate, 1t begins to move due to the water force. Will the accel-
eration of the plate remain constant or change”? Explain.

e
Nozzle —-
K‘--Water jet
A O ©




Example:

A 907 elbow i1s used to direct water flow at a rate of
25 kg/s in a horizontal pipe upward. The diameter of the
entire elbow i1s 10 cm. The elbow discharges water into the
atmosphere, and thus the pressure at the exit is the local
atmospheric pressure. The elevation difference between the
centers of the exit and the inlet of the elbow is 35 cm. The

welight of the elbow and the water in it is considered to be
negligible. Determine (a) the gage pressure at the center of

the inlet of the elbow and (/) the anchoring force needed to
hold the elbow in place. Take the momentum-flux correction
factor to be 1.03.

Water
23 kg/fs




Example:

Commercially available large wind turbines

have blade span diameters as large as 100 m and
generate over 3 MW of electric power at peak design condi-
tions. Consider a wind turbine with a 90-m blade span sub-
jected to 25-km/h steady winds. If the combined turbine—
generator efficiency of the wind turbine is 32 percent, deter-
mine (a) the power generated by the turbine and (b) the hori-
zontal force exerted by the wind on the supporting mast of
the turbine. Take the density of air to be 1.25 kg/m’, and dis-
regard frictional effects.

25 km/h

ERRRR




Example:

Water accelerated by a nozzle to 15 m/s strikes the
vertical back surface of a cart moving horizontally at a con-
stant velocity of 5 m/s in the flow direction. The mass flow
rate of water i1s 25 kg/s. After the strike, the water stream
splatters off in all directions in the plane of the back surface.
(a) Determine the force that needs to be applied on the
brakes of the cart to prevent it from accelerating. (b) If this
force were used to generate power instead of wasting it on
the brakes, determine the maximum amount of power that
can be generated.

o dmfs
15 m/s
—-
)
K‘Wﬂterjet
i O 2 ©




REVIEW OF ROTATIONAL MOTION AND
ANGULAR MOMENTUM

Rotational motion: A motion during
which all points in the body move in
circles about the axis of rotation.

Rotational motion is described with
angular quantities such as the
angular distance 6, angular velocity
@, and angular acceleration «.

Angular velocity: The angular
distance traveled per unit time.

Angular acceleration: The rate of
change of angular velocity.

do  dl/r) 1 dl V
= — - — e

dt dt r E o

]

Il —

do d*0 1dV a, The relations between angular
o = = —0 = — =
dt dt~

rdt distance 6, angular velocity o,
and linear velocity V.

V = rw and d, = roy
75



« Newton'’s second law requires that there must be a force acting in the
tangential direction to cause angular acceleration.

« The strength of the rotating effect, called the moment or torque, is proportional
to the magnitude of the force and its distance from the axis of rotation.

« The perpendicular distance from the axis of rotation to the line of action of the
force is called the moment arm, and the torque M acting on a point mass m at
a normal distance r from the axis of rotation is expressed as

i

M = rF, = rma, = mr'a Torque Mass, m <> Moment of inertia, [

- Linear acceleration, a <+ Angular acceleration, «
M = ria dm = { 2 Sm}f = [a Linear velocity, V <= Angular velocity, w

' mass Y mass Linear momentum < Angular momentum

mv < I

| is the moment of inertia of the body
about the axis of rotation, which is a Force, F < Torque, M
measure of the inertia of a body F=md«M=1d

Moment of force, M «= Moment of momentum, H

against rotation. ree, 4 cntot m
M=7FXFeoH=7xmV

Unlike mass, the rotational inertia of
a body also depends on the
distribution of the mass of the body
with respect to the axis of rotation.

Analogy between corresponding
linear and angular quantities.
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- o C Angular momentum
H = ’ Fow om = ’ Foomlo = lw o

“mass “mass H = .‘ruii_tiI
H
S e dday  JdH Angulgr momentum
M=lo=1-—=——=-—-equation
'[-Illlll {ilrll {!|r|'
H=rmV 2N (rad/s) Angular velocity
W = rad/s)
= rm(rw) 60 VErsus rpm
‘ = r’maw
=lw ® = 27N

— =
J#

——
—
o

| (

L-IFI.‘*L]']HT‘[ — fI)JI.Ir;" = _?FJ'LIL?

Angular momentum of point mass m The relations between angular
rotating at angular velocity @ at velocity, rpm, and the power
distance r from the axis of rotation. transmitted through a shatft.
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i'"i'f;tm't = FV = Fro = Mw
HI'HH;I“ = wM = 2mnM (W)  Shaft power
KE, =3lw” Rotational kinetic energy

During rotational motion, the direction of velocity changes even when its
magnitude remains constant. Velocity is a vector quantity, and thus a change
in direction constitutes a change in velocity with time, and thus acceleration.
This is called centripetal acceleration.

i, = — Fw~
;

]

i)

Centripetal acceleration is directed toward the axis of rotation (opposite direction of
radial acceleration), and thus the radial acceleration is negative. Centripetal
acceleration is the result of a force acting on an element of the body toward the
axis of rotation, known as the centripetal force, whose magnitude is F, = mV?/r.

Tangential and radial accelerations are perpendicular to each other, and
the total linear acceleration is determined by their vector sum:

a=d, + d,
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THE ANGULAR MOMENTUM EQUATION

Many engineering problems involve the moment of the linear momentum of
flow streams, and the rotational effects caused by them.

Such problems are best analyzed by the angular momentum equation, also
called the moment of momentum equation.

An important class of fluid devices, called turbomachines, which include

centrifugal pumps, turbines, and fans, is analyzed by the angular

momentum equation.

T

x/
e

¢ .
\ ! rsing

—

P

Direction of

rotation .";\
0/

V)

Tl

Jlﬁ: ?\
M = Frsinf

%
The moment of a force F' about a
point O is the vector product of the
position vector 7 and F'.

A force whose line of

action passes through
point O produces zero
moment about point O.

@\]
The determination Q

of the direction of ﬂ{;ﬁ;gﬁ\ L
the moment by the = |
right-hand rule. !

Sense of the

moment

(9



Moment of Moment of momentum
momentum (system)
H=7XmV H%ZJ[?XHwW
— SYS
dH.. 4 | L
v _d J (7 X V)p dV Rate of change of
e dt ] moment of momentum

Angular momentum
S - dH,, equation for a system
M=—

dt 2;’&? = 2(? X F)

‘fﬂjs}'ﬁ d J

GX¥WJU+J(FXVMKnﬁM

dt dt v s

> M z% (7 X 1_-3”; dv +
ar

‘ov ‘Cs

General:

dBq,
“:_“IJ pde+I ph(V, - 7)dA

dt dt v cs

L L L
.

Hsys = i[ (r X EJF dU+I (r X FJ;:{E- 1) dA
di di ov cs

The angular momentum equation

is obtained by replacing B in the

Reynolds transport theorem by the

angular momentum H . and b by

the angular momentum per unit

mass I* X V.

— . =
(r XV )P ‘.'_{_ - 11 )dA

The net flow rate of

The sum of all The time rate of change
of the angular momentum | +

of the contents of the CV

external moments | =

acting on a CV

angu lar momentum

out of the control

surface by mass flow

Fixed CV:

Eﬁz—'

- (r X V)pdV +
di

‘ov ‘Cs

- =t AN
(r X V)p(V - n)dA

80



Special Cases

During steady flow, the amount of angular momentum within the control
volume remains constant, and thus the time rate of change of angular
momentum of the contents of the control volume is zero.

— - — —
(r X V)p(V, - n)dA

Steady flow: S M=

C5

An approximate form of the angular momentum equation in terms of
average properties at inlets and outlets:

f

S =21 FxVind 2oV — ST XV
Q.U I (Fr X V)pdV+ 2;.\;..1 zfﬂ;..i
il Jov ot mn
Steady flow: DM = D TFXmV = D FXmV
n

ot

The net torque acting on the control volume during steady flow is equal to the
difference between the outgoing and incoming angular momentum flow rates.

SM=raV—"3rmv scalar form of angular
oul in momentum equation
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Radial-Flow Devices

Radial-flow devices: Many rotary-flow devices such as centrifugal pumps and
fans involve flow in the radial direction normal to the axis of rotation.

Axial-flow devices are easily analyzed using the linear momentum equation.

Radial-flow devices involve large changes in angular momentum of the fluid
and are best analyzed with the help of the angular momentum equation.

Casing
b, -

Impeller
shroud

han @

Impeller
blade

Scroll
Side view Frontal view

Eye

Side and frontal views of a typical centrifugal pump.
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The conservation of mass equation for steady incompressible flow
ll.;"l] = 'L;*'g =V — 2mrb)V, , = 2mrby)V,,
v v

Vig= and Vou=
" 2anb, Y

b,

EM = 2 rmV — 2 4n)/ angular momentum

out in equatlon
. C ~ Euler’s turbine
[ipare = m(rVy = 1 Vi)
formula
T = m(raVosin ey — rVysin @)
When Vi, = or V,, = wr,
\\‘n Tahait ideal — ,r”m{,r 2 ‘F%}
| '!‘
I E
[ : H{h aft Tf-;]mﬂ = 2’_"r"—[qn..]vlft w = 2mn
\ )
\ !
/
r

/ An annular control
volume that encloses
the impeller section of
a centrifugal pump.
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Example:

Water is flowing through a 12-cm-diameter pipe that
consists of a 3-m-long vertical and 2-m-long horizontal sec-
tion with a 90° elbow at the exit to force the water to be dis-
charged downward, as shown in Fig. P6-47, in the vertical
direction. Water discharges to atmospheric air at a velocity of
4 m/s, and the mass of the pipe section when filled with
water is 15 kg per meter length. Determine the moment act-
ing at the intersection of the vertical and horizontal sections
of the pipe (point A). What would your answer be if the flow
were discharged upward instead of downward?

P

m

12 cm
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Example:

A large lawn sprinkler with four identical arms is to be converted into a tur-
bine to generate electric power by attaching a generator to its rotating head,
as shown in Fig. 6-38. Water enters the sprinkler from the base along the
axis of rotation at a rate of 20 L/s and leaves the nozzles in the tangential

direction. The sprinkler rotates at a rate of 300 rpm in a horizontal plane.
The diameter of each jet is 1 cm, and the normal distance between the axis

of rotation and the center of each nozzle is 0.6 m. Estimate the electric
power produced.
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