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Abstract: Atrial fibrillation (AF) is a silent disease that is difficult to diagnose because its 

symptoms are sporadic. This disease has a high mortality rate in the world when it is 

diagnosed late. Currently, convolutional neural networks (CNN) are an important tool 

used for the diagnosis of diseases as AF, breast cancer, among others. However, CNNs 

are both computationally and memory intensive, making them difficult to deploy in 

devices with low computational resources. Quantized networks are a solution to reduce 

the amount of computing and memory resources. We aim to implement the inference 

process of a CNN into an 8-bit microcontroller (ATMEGA2560) by using quantization 

strategies. Several 8-bits quantization techniques were tested before implement the CNN 

into the microcontroller. The final implementation was done by a proposed heuristic 

method that we called Dynamic Layer Quantization. This method allows us to achieve an 

effective way to reduce the computational complexity of CNN and its memory 

requirements. Our results show an accuracy of 89.48% on the test data. This work is the 

first stage of a project that aims to build a portable device for the detection of AF.  

 

Keywords: Atrial fibrillation, Heuristic method, Microcontroller, Convolutional Neural 

Network, Quantization. 

 

Resumen: La fibrilación auricular (FA) es una enfermedad de difícil diagnóstico porque 

sus síntomas son esporádicos y tiene una alta tasa de mortalidad en el mundo cuando se 

diagnostica tarde. Actualmente, las redes neuronales convolucionales (CNN) son una 

herramienta importante utilizada para el diagnóstico de enfermedades como fibrilación 

auricular, cáncer de mama, entre otras. Sin embargo, las CNN tiene una alta demanda 

computacional y de memoria, lo que dificulta su implementación en dispositivos con 

bajos recursos computacionales como los microcontroladores de 8 bits. Un tema muy 

activo en la investigación son las redes neuronales cuantizadas ya que son una solución 

para reducir la cantidad de recursos informáticos y de memoria. En este trabajo se 

implementó el proceso de inferencia de una CNN en un microcontrolador de 8 bits 

(ATMEGA2560) mediante el uso de estrategias de cuantización. Se probaron varias 

técnicas de cuantización de 8 bits antes de implementar la CNN en el microcontrolador. 

La implementación final se realizó mediante un método heurístico que llamamos 

Cuantificación Dinámica por Capa. Este método nos permite lograr una forma efectiva de 

reducir la complejidad computacional de la CNN y sus requerimientos de memoria. 

Nuestros resultados muestran una precisión del 89,48 % en los datos de prueba. Este 

trabajo es la primera etapa de un macroproyecto que tiene como objetivo construir un 

dispositivo portátil para la detección de fibrilación auricular. 

 

Palabras clave: Cuantización., Fibrilación Auricular, Método Heurístico, 

Microcontrolador, Red neuronal Convolucional. 
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1. INTRODUCTION 

 

Atrial fibrillation (AF) is a type of cardiac 

arrhythmia, characterized by very rapid and 

uncoordinated atrial activity. This disorder of the 

electrical signals of the heart has important 

clinical implications. AF patients have a high 

risk of stroke and thromboembolism. 

Furthermore, this disease can be paroxysmal and 

asymptomatic, making its early diagnosis 

difficult (Tse, H.-F., & Lane, D. A, 2016). 

Several studies have proposed the convolutional 

neural networks (CNN) for the detection of atrial 

fibrillation achieving high levels of accuracy 

(Yao, Z., Zhu, Z., & Chen, Y, 2017)( Xia, Y., 

Wulan, N., & Zhang, H, 2018)( Pourbabaee, B., 

Roshtkhari, M. J., & Khorasani, K, 2018). By 

achieving high performance, CNN-based 

methods demand high amount computation and 

memory resources. The demand of resources 

become challenging for the inference of CNN in 

integrated circuit applications as 

microcontrollers.  

 

Quantization is an effective strategy to solve 

computing demand and memory resources. In the 

past, various CNN quantization methodologies 

have been studied to perform hardware 

implementation (Tang, C. Z., & Kwan, H. K, 

1993). CNN quantization requires a set of 

methodologies to reduce the size of the 

architecture and the weights of the neural 

network (Lee, C., & Kang, I, 2018) (Seo, S., & 

Kim, J, 2019) (Athar, A, 2018). Quantization 

seeks to maintain the original accuracy as much 

as possible (Ruminski, J., & Rad, P, 2019). In 

this study, we aim to quantize the inference 

process of CNN Castillo-Granados (Castillo, J. 

A., Granados, Y. C., & Fajardo, C. A, 2020) and 

subsequently implement it in a microcontroller. 

We tested four different quantization methods. A 

heuristic method, that we called Dynamic Layer 

Quantization, was chosen because it provides the 

least loss of precision. With this method, we 

assign a different quantization factor to each 

layer. The Dynamic Layer Quantization method 

allow us to quantize CNN to 8-bit integers with 

an accuracy of of 89,48%. The implementation 

was carried out on the Atmega 2560 

microcontroller using only 10% and 54% of the 

FLASH memory and SRAM, respectively. 

 

Contributions: 

Our main contribution in this work is the 

Dynamic Layer Quantization method, which 

offers a quantization scheme to implement DNNs 

on microcontrollers of 8 bits.  Our results suggest 

that the proposed method offers better accuracy 

than the commercial tool TensorFlow Lite.    

 

The rest of this paper is structured as follows: 

Section II summarizes the CNN model 

CastilloGranados (Castillo, J. A., Granados, Y. 

C., & Fajardo, C. A, 2020). Section III describes 

each of the quantization methods tested. Section 

IV describes the implementation in the Atmega 

2560 microcontroller. In Section V we present 

the most important results. Finally, this paper is 

closed with the conclusions in Section VI. 

 

2. CONVOLUTIONAL NEURAL 

NETWORKS  

 

The artificial neural networks have an input 

layer, intermediate layers, and an output layer. 

The convolutional neural networks (CNN) have 

three types of layers between their intermediate 

layers. Those layers are the convolutional layers 

that extract information by filters, the grouping 

layers that reduce the size of the input, and the 

fully connected layers that classify information 

extracted from previous layers. In this work, we 

implemented the Castillo-Granados CNN 

(Castillo, J. A., Granados, Y. C., & Fajardo, C. 

A, 2020), which detects atrial fibrillation (AF) by 

ECG signals. The network was trained using the 

MIT-BIH database (Goldberger, A. L, 2000). 

The ECG signals were stored in vectors of 500 

samples at 250 [samples / s]. In (Castillo, J. A., 

Granados, Y. C., & Fajardo, C. A, 2020) the 

authors achieve an accuracy of 97,44 % by using 

the traditional 64-bit double-precision floating-

point format. The Castillo-Granados CNN is 

made up of 12 layers. An input layer, four 

convolutional layers with max-pooling layers 

and three fully connected layers.  The last full 

connected layer has a single output data. The 

CNN has a total of 9.385 parameters. The Table 

1 summarizes the characteristics of the layers. 

 
3. QUANTIZATION STRATEGY 

 

Four different techniques were tested to quantize 

the CNN to 8 bits before implementing it in the 

microcontroller.  First, we used two techniques 

contained in the TensorFlow backend (Seo, S., & 

Kim, J, 2019), and then we used two heuristic 

methods based on Fake Quantization (Gupta, K., 

& Narayanan, P, 2015),(Nagel, Louizos, C., & 

Blankevoort, T, 2020). 
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Table 1: convolutional neural network 

architecture

 
 
3.1 TensorFlow Quantization: 

 

The TensorFlow library offers a framework for 

deep learning called TensorFlow Lite (Seo, S., & 

Kim, J, 2019). This tool converts the model into 

a special storage format (Flatbuffer) with 

reduced computational and memory resources. 

TensorFlow Lite has different optimization 

methods available to quantize the parameters that 

are not quantized in the conversion. We apply 

Quantization for Size and Integer Quantization. 

The Quantization for Size method optimizes the 

network depending on the weight of the 

operations of the model (Google, 2020). Once 

the Castillo-Granados CNN was quantized, we 

used the software Netron (Roeder, L, 2020) for 

the extraction and review of the quantized 

weights. This method converts all parameters to 

32-bit floating-point, except for the first dense 

layer, that was converted to an 8-bit integer. 

Integer quantization takes all weights and 

network activation functions to 8-bit integers 

(Google, 2020). This method applied in the 

Castillo-Granados CNN converted all parameters 

of all layers to 8-bit integers. Table 2 summarizes 

the results regarding the accuracy by using 

Quantization for Size and Integer Quantization. 

 

Table 2: accuracy of tensorflow methods 

 

 

Source: Authors own creation 

 

3.2 Heuristic Quantization 

 

We tested two heuristic methods, which are an 

adaption of the Stochastic Rounding Method 

proposed in (Google, 2020). The first method is 

the static layer quantization, and the second 

method is the dynamic layer quantization. The 

Static Layer Quantization (SLQ) applies the 

same quantization factor ( ) to all layers in the 

model, according the following equation, 

 

  (1) 

 

Where B is the floating-point number to be 

quantized, Q is the number of bits after the point 

that will shift to the left.  is the quantization 

factor. Finally, A is a version of B shifted Q − 

bits to the left. 

 

To find the appropriate value of Q, we generate 

the histograms of the inputs and the activations 

of the network layers for the MIT signals (See 

section 1). Using the histogram, we analyze the 

dynamic range of the input data and intermediate 

values generated through the network. Figure 1 is 

an example of the histograms in this analysis, in 

this case, is showing the distribution of the 

parameters in the FC1 layer. Note that the values 

are concentrated in the range of 0 to 6. Table 3 

shows the dynamic range for each layer in the 

network. In this table, CONVi and FCi refer to 

convolutional and to full connected layers, 

respectively. The data was analyzed after going 

through the ReLu activation function (Agarap, A. 

F, 2018) except for the output layer. The output 

layer uses the Sigmoid activation function 

(Zhang, C., & Woodland, P. C, 2015) to generate 

a probability distribution. For this reason, we 

analyze the data in the output layer before the 

Sigmoid function. Then, we use the equation 2 to 

calculate the number of bits needed to represent 

the integer part.  

 

Table 3: Layer output range on CNN 

 

 

Source: Authors own creation 

 

  (2) 
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Where  is the maximum value of the 

entire neural network, and C is the number of 

bits to represent the integer part of the number. 

The equation 3 is used to calculate the number of 

bits needed to represent the decimal part. 

 

   (3) 

 

Where ND is the number of bits to represent the 

data, in our case ND is 8-bit. And Q is the 

number of bits to represent the decimal part of 

the number. In Table 3, the absolute maximum 

value is found in the FC3 layer. Substituting this 

number in the equation 2 we obtain C = 5, then 

with the equation 3 we obtain Q = 3. We tested 

this quantization factor on the network and the 

results showed a significantly reduction on the 

accuracy. Using Q = 3, we take the entire range 

of available values, including those that are far 

from the highest concentration of data (see 

Figure 1). To improve the accuracy, we focus our 

analysis in the range to the highest data 

concentration intervals. Next, we apply equations 

2 and 3 to calculate the value of the new Q. We 

repeat this process until we find the Q value for 

the maximum accuracy of the quantized CNN. 

Table 4 shows the results when we choose the 

highest data concentration to calculate 

quantization factor. 

 

 
Fig. 1. Histogram of the layer’s output data 

Fully Connected 1 
Source: Authors own creation 

 

On the other hand, the quantization process 

generates an unquantized decimal part. We use 

truncation and rounding methods to remove the 

unquantized decimal part (Sripad, A., & Snyder, 

D, 1977) (Schwarz, E. M, 1996). The rounding 

error is much less than the truncation error. In the 

Table 4, we show the results when applying the 

rounding method to eliminate the unquantized 

decimal part with all the Q found. Dynamic 

Layer Quantization (DLQ) is an improvement to 

the Static Layer Quantization technique. The 

difference is that we include the dynamic range 

analysis of the values of the weights per layer as 

shown in Table 5. We analyze each layer 

individually and apply a different quantization 

factor to each one. To find the appropriate Q 

value in each of the layers, we analyzed the 

dynamic range of the parameters and the outputs 

for all layers, as shown in Table 5. We use 

equation 4 to calculate the number of bits needed 

to represent the integer part. 

 

Table 4: Neural Network accuracy for each 

value of Q 

 

 
Source: Authors own creation 

 

 (4) 
 

Where Ci is the number of bits to represent the 

integer part of layer ii, OL is the maxi- mum 

value of the activations of layer ii and P is the 

maximum value of the parameters of layer II. 

 

Then using equation 5, we calculate the number 

of remaining bits to represent the decimal part. 

The quantization factor Q represents the 

available decimal bits. 

 

 (5) 

 
 

Where Qi is the number of bits to represent the 

decimal part of layer i. 

 

Table 5 shows the dynamic range of the 

parameters and the outputs of the layers. The 

highlighted boxes represent the maximum values 

used to calculate the value of Qi. The Q values 

shown in this table generated the best accuracy 

when quantizing the CNN when to using the 

DLQ method.  

 

Table 5: Outputs and parameters of each 

layer with the appropriate Q. 
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Source: Authors own creation 

 

4. IMPLEMENTATION IN THE 

MICROCONTROLLER 

 

The implementation in the microcontroller was 

done, describing the quantized CNN inference 

and verifying the accuracy of the network by 

sending the data from an SD module to the 

ATMEGA2560 microcontroller (Atmel, 2014). 

CNN is made up of thirteen layers, including the 

input layer as shown in Table 1. The outputs of 

these thirteen layers must be stored in SRAM 

memory because their value is constantly 

changing. To reduce the amount of SRAM 

memory required, we merge the convolution and 

max-pooling layers. Figure 2 shows how was 

reduced the number of outputs from 13 to 9. We 

calculate all the output values of the 

convolutional layers, but we only store the 

outputs of the max-pooling layers. 

 

 
Fig. 2. Convolutional Neural Network with 

fusion of some layers 
Source: Authors own creation 

 

At the output layer, negative values correspond 

to a non-fibrillated signal and positive values to 

fibrillated signals. We use this fact to change the 

activation function Sigmoid (Zhang, C., & 

Woodland, P. C, 2015), in the FC3 layer, by the 

function Hard-Limit (MATLAB hardlim, 2020). 

The Hard-Limit function assigns 0 to negative 

values and 1 to positive values, so this function 

converts the CNN output into a binary output. 

This change reduces the number of bits needed to 

store CNN output data. Table 6 shows the 

memory usage in the ATMEGA2560 

microcontroller. The network parameters were 

stored in FLASH memory because the numeric 

value does not change after stored. To store the 

network parameters, we use the PROGMEM 

function (PROGMEM, 2020). The intermediate 

values are stored in SRAM memory because 

these values change with each inference. 

EEPROM memory was not used because it is 

small and has few write cycles. The implemented 

network has an inference time of 677[ms] using 

an oscillator of 12[MHz]. This inference time is 

enough for this application because the intervals 

of the ECG signal are collected each two 

seconds. 

 

Table 6: Memory used on the MCU 

implementation 

 

 
Source: Authors own creation 

 

We developed a code in MATLAB to emulate 

the inference process carried out in the 

microcontroller. We use this code to validate the 

accuracy of the network for the quantized 

methods tested in this work. 

 

5. RESULTS 

 

Table 7 summarizes the results obtained in this 

work. In this table, we compare the accuracy of 

the quantization methods against the CNN at 64-

bits double-precision floating point format 

(Unquantized). We also show the percentage of 

accuracy loss regarding unquantized network. 

Finally, we indicate the possibility of 

implementing each quantized model in an-8-bit 

microcontroller. 

 

Table 7: Accuracy, loss accuracy and 

supported for each quantization methods 
 

 
Source: Authors own creation 
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The results show that the network quantized with 

the Dynamic Layer Quantization method has the 

best accuracy. 
 

6. CONCLUSIONS 

 
In this work, four quantization methods were 

tested to implement the Castillo-Granados CNN 

into an 8-bit microcontroller (ATMEGA2560). 

First, we used the TensorFlow backend to 

quantize the network. Our result showed that 

TensorFlow quantization significantly reduces 

the precision of the network. The best results 

regarding accuracy were obtained by a method 

that we called Dynamic Layer Quantization. Our 

results showed that the implementation achieves 

an accuracy of 89.48%, and only uses the 10% in 

the FLASH memory and 54% in the SRAM 

memory. A future job will focus on using post 

quantization strategies, which have proved to 

improve the accuracy of fake-quantized CNN 

(Song Han, 2017). This work is part of a project 

that seeks the development of a low-cost portable 

device for the early diagnosis of AF. 
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