

Universidad de Pamplona

1

 CIETA

IMPLEMENTATION OF A DINAMIC QUANTIZED CNN FOR DETECTION OF

ATRIAL FIBRILLATION IN AN 8-BIT MICROCONTROLLER

IMPLEMENTACIÓN DE UNA CNN CUANTIZADA DINÁMICAMENTE PARA

LA DETECCIÓN DE FIBRILACIÓN AURICULAR EN UN

MICROCONTROLADOR DE 8 BITS

Laura C. Martinez Cruz, Mauricio Bautista Porras, Jeyson Castillo and Carlos A.

Fajardo

Escuela de Ingenierías Eléctrica, Electrónica y de Telecomunicaciones

Universidad Industrial de Santander

Bucaramanga, Santander, Colombia.

Abstract: Atrial fibrillation (AF) is a silent disease that is difficult to diagnose because its

symptoms are sporadic. This disease has a high mortality rate in the world when it is

diagnosed late. Currently, convolutional neural networks (CNN) are an important tool

used for the diagnosis of diseases as AF, breast cancer, among others. However, CNNs

are both computationally and memory intensive, making them difficult to deploy in

devices with low computational resources. Quantized networks are a solution to reduce

the amount of computing and memory resources. We aim to implement the inference

process of a CNN into an 8-bit microcontroller (ATMEGA2560) by using quantization

strategies. Several 8-bits quantization techniques were tested before implement the CNN

into the microcontroller. The final implementation was done by a proposed heuristic

method that we called Dynamic Layer Quantization. This method allows us to achieve an

effective way to reduce the computational complexity of CNN and its memory

requirements. Our results show an accuracy of 89.48% on the test data. This work is the

first stage of a project that aims to build a portable device for the detection of AF.

Keywords: Atrial fibrillation, Heuristic method, Microcontroller, Convolutional Neural

Network, Quantization.

Resumen: La fibrilación auricular (FA) es una enfermedad de difícil diagnóstico porque

sus síntomas son esporádicos y tiene una alta tasa de mortalidad en el mundo cuando se

diagnostica tarde. Actualmente, las redes neuronales convolucionales (CNN) son una

herramienta importante utilizada para el diagnóstico de enfermedades como fibrilación

auricular, cáncer de mama, entre otras. Sin embargo, las CNN tiene una alta demanda

computacional y de memoria, lo que dificulta su implementación en dispositivos con

bajos recursos computacionales como los microcontroladores de 8 bits. Un tema muy

activo en la investigación son las redes neuronales cuantizadas ya que son una solución

para reducir la cantidad de recursos informáticos y de memoria. En este trabajo se

implementó el proceso de inferencia de una CNN en un microcontrolador de 8 bits

(ATMEGA2560) mediante el uso de estrategias de cuantización. Se probaron varias

técnicas de cuantización de 8 bits antes de implementar la CNN en el microcontrolador.

La implementación final se realizó mediante un método heurístico que llamamos

Cuantificación Dinámica por Capa. Este método nos permite lograr una forma efectiva de

reducir la complejidad computacional de la CNN y sus requerimientos de memoria.

Nuestros resultados muestran una precisión del 89,48 % en los datos de prueba. Este

trabajo es la primera etapa de un macroproyecto que tiene como objetivo construir un

dispositivo portátil para la detección de fibrilación auricular.

Palabras clave: Cuantización., Fibrilación Auricular, Método Heurístico,

Microcontrolador, Red neuronal Convolucional.

Universidad de Pamplona

2

 CIETA

1. INTRODUCTION

Atrial fibrillation (AF) is a type of cardiac

arrhythmia, characterized by very rapid and

uncoordinated atrial activity. This disorder of the

electrical signals of the heart has important

clinical implications. AF patients have a high

risk of stroke and thromboembolism.

Furthermore, this disease can be paroxysmal and

asymptomatic, making its early diagnosis

difficult (Tse, H.-F., & Lane, D. A, 2016).

Several studies have proposed the convolutional

neural networks (CNN) for the detection of atrial

fibrillation achieving high levels of accuracy

(Yao, Z., Zhu, Z., & Chen, Y, 2017)(Xia, Y.,

Wulan, N., & Zhang, H, 2018)(Pourbabaee, B.,

Roshtkhari, M. J., & Khorasani, K, 2018). By

achieving high performance, CNN-based

methods demand high amount computation and

memory resources. The demand of resources

become challenging for the inference of CNN in

integrated circuit applications as

microcontrollers.

Quantization is an effective strategy to solve

computing demand and memory resources. In the

past, various CNN quantization methodologies

have been studied to perform hardware

implementation (Tang, C. Z., & Kwan, H. K,

1993). CNN quantization requires a set of

methodologies to reduce the size of the

architecture and the weights of the neural

network (Lee, C., & Kang, I, 2018) (Seo, S., &

Kim, J, 2019) (Athar, A, 2018). Quantization

seeks to maintain the original accuracy as much

as possible (Ruminski, J., & Rad, P, 2019). In

this study, we aim to quantize the inference

process of CNN Castillo-Granados (Castillo, J.

A., Granados, Y. C., & Fajardo, C. A, 2020) and

subsequently implement it in a microcontroller.

We tested four different quantization methods. A

heuristic method, that we called Dynamic Layer

Quantization, was chosen because it provides the

least loss of precision. With this method, we

assign a different quantization factor to each

layer. The Dynamic Layer Quantization method

allow us to quantize CNN to 8-bit integers with

an accuracy of of 89,48%. The implementation

was carried out on the Atmega 2560

microcontroller using only 10% and 54% of the

FLASH memory and SRAM, respectively.

Contributions:

Our main contribution in this work is the

Dynamic Layer Quantization method, which

offers a quantization scheme to implement DNNs

on microcontrollers of 8 bits. Our results suggest

that the proposed method offers better accuracy

than the commercial tool TensorFlow Lite.

The rest of this paper is structured as follows:

Section II summarizes the CNN model

CastilloGranados (Castillo, J. A., Granados, Y.

C., & Fajardo, C. A, 2020). Section III describes

each of the quantization methods tested. Section

IV describes the implementation in the Atmega

2560 microcontroller. In Section V we present

the most important results. Finally, this paper is

closed with the conclusions in Section VI.

2. CONVOLUTIONAL NEURAL

NETWORKS

The artificial neural networks have an input

layer, intermediate layers, and an output layer.

The convolutional neural networks (CNN) have

three types of layers between their intermediate

layers. Those layers are the convolutional layers

that extract information by filters, the grouping

layers that reduce the size of the input, and the

fully connected layers that classify information

extracted from previous layers. In this work, we

implemented the Castillo-Granados CNN

(Castillo, J. A., Granados, Y. C., & Fajardo, C.

A, 2020), which detects atrial fibrillation (AF) by

ECG signals. The network was trained using the

MIT-BIH database (Goldberger, A. L, 2000).

The ECG signals were stored in vectors of 500

samples at 250 [samples / s]. In (Castillo, J. A.,

Granados, Y. C., & Fajardo, C. A, 2020) the

authors achieve an accuracy of 97,44 % by using

the traditional 64-bit double-precision floating-

point format. The Castillo-Granados CNN is

made up of 12 layers. An input layer, four

convolutional layers with max-pooling layers

and three fully connected layers. The last full

connected layer has a single output data. The

CNN has a total of 9.385 parameters. The Table

1 summarizes the characteristics of the layers.

3. QUANTIZATION STRATEGY

Four different techniques were tested to quantize

the CNN to 8 bits before implementing it in the

microcontroller. First, we used two techniques

contained in the TensorFlow backend (Seo, S., &

Kim, J, 2019), and then we used two heuristic

methods based on Fake Quantization (Gupta, K.,

& Narayanan, P, 2015),(Nagel, Louizos, C., &

Blankevoort, T, 2020).

Universidad de Pamplona

2

 CIETA

Table 1: convolutional neural network

architecture

3.1 TensorFlow Quantization:

The TensorFlow library offers a framework for

deep learning called TensorFlow Lite (Seo, S., &

Kim, J, 2019). This tool converts the model into

a special storage format (Flatbuffer) with

reduced computational and memory resources.

TensorFlow Lite has different optimization

methods available to quantize the parameters that

are not quantized in the conversion. We apply

Quantization for Size and Integer Quantization.

The Quantization for Size method optimizes the

network depending on the weight of the

operations of the model (Google, 2020). Once

the Castillo-Granados CNN was quantized, we

used the software Netron (Roeder, L, 2020) for

the extraction and review of the quantized

weights. This method converts all parameters to

32-bit floating-point, except for the first dense

layer, that was converted to an 8-bit integer.

Integer quantization takes all weights and

network activation functions to 8-bit integers

(Google, 2020). This method applied in the

Castillo-Granados CNN converted all parameters

of all layers to 8-bit integers. Table 2 summarizes

the results regarding the accuracy by using

Quantization for Size and Integer Quantization.

Table 2: accuracy of tensorflow methods

Source: Authors own creation

3.2 Heuristic Quantization

We tested two heuristic methods, which are an

adaption of the Stochastic Rounding Method

proposed in (Google, 2020). The first method is

the static layer quantization, and the second

method is the dynamic layer quantization. The

Static Layer Quantization (SLQ) applies the

same quantization factor () to all layers in the

model, according the following equation,

 (1)

Where B is the floating-point number to be

quantized, Q is the number of bits after the point

that will shift to the left. is the quantization

factor. Finally, A is a version of B shifted Q −

bits to the left.

To find the appropriate value of Q, we generate

the histograms of the inputs and the activations

of the network layers for the MIT signals (See

section 1). Using the histogram, we analyze the

dynamic range of the input data and intermediate

values generated through the network. Figure 1 is

an example of the histograms in this analysis, in

this case, is showing the distribution of the

parameters in the FC1 layer. Note that the values

are concentrated in the range of 0 to 6. Table 3

shows the dynamic range for each layer in the

network. In this table, CONVi and FCi refer to

convolutional and to full connected layers,

respectively. The data was analyzed after going

through the ReLu activation function (Agarap, A.

F, 2018) except for the output layer. The output

layer uses the Sigmoid activation function

(Zhang, C., & Woodland, P. C, 2015) to generate

a probability distribution. For this reason, we

analyze the data in the output layer before the

Sigmoid function. Then, we use the equation 2 to

calculate the number of bits needed to represent

the integer part.

Table 3: Layer output range on CNN

Source: Authors own creation

 (2)

Universidad de Pamplona

3

 CIETA

Where is the maximum value of the

entire neural network, and C is the number of

bits to represent the integer part of the number.

The equation 3 is used to calculate the number of

bits needed to represent the decimal part.

 (3)

Where ND is the number of bits to represent the

data, in our case ND is 8-bit. And Q is the

number of bits to represent the decimal part of

the number. In Table 3, the absolute maximum

value is found in the FC3 layer. Substituting this

number in the equation 2 we obtain C = 5, then

with the equation 3 we obtain Q = 3. We tested

this quantization factor on the network and the

results showed a significantly reduction on the

accuracy. Using Q = 3, we take the entire range

of available values, including those that are far

from the highest concentration of data (see

Figure 1). To improve the accuracy, we focus our

analysis in the range to the highest data

concentration intervals. Next, we apply equations

2 and 3 to calculate the value of the new Q. We

repeat this process until we find the Q value for

the maximum accuracy of the quantized CNN.

Table 4 shows the results when we choose the

highest data concentration to calculate

quantization factor.

Fig. 1. Histogram of the layer’s output data

Fully Connected 1
Source: Authors own creation

On the other hand, the quantization process

generates an unquantized decimal part. We use

truncation and rounding methods to remove the

unquantized decimal part (Sripad, A., & Snyder,

D, 1977) (Schwarz, E. M, 1996). The rounding

error is much less than the truncation error. In the

Table 4, we show the results when applying the

rounding method to eliminate the unquantized

decimal part with all the Q found. Dynamic

Layer Quantization (DLQ) is an improvement to

the Static Layer Quantization technique. The

difference is that we include the dynamic range

analysis of the values of the weights per layer as

shown in Table 5. We analyze each layer

individually and apply a different quantization

factor to each one. To find the appropriate Q

value in each of the layers, we analyzed the

dynamic range of the parameters and the outputs

for all layers, as shown in Table 5. We use

equation 4 to calculate the number of bits needed

to represent the integer part.

Table 4: Neural Network accuracy for each

value of Q

Source: Authors own creation

 (4)

Where Ci is the number of bits to represent the

integer part of layer ii, OL is the maxi- mum

value of the activations of layer ii and P is the

maximum value of the parameters of layer II.

Then using equation 5, we calculate the number

of remaining bits to represent the decimal part.

The quantization factor Q represents the

available decimal bits.

 (5)

Where Qi is the number of bits to represent the

decimal part of layer i.

Table 5 shows the dynamic range of the

parameters and the outputs of the layers. The

highlighted boxes represent the maximum values

used to calculate the value of Qi. The Q values

shown in this table generated the best accuracy

when quantizing the CNN when to using the

DLQ method.

Table 5: Outputs and parameters of each

layer with the appropriate Q.

Universidad de Pamplona

4

 CIETA

Source: Authors own creation

4. IMPLEMENTATION IN THE

MICROCONTROLLER

The implementation in the microcontroller was

done, describing the quantized CNN inference

and verifying the accuracy of the network by

sending the data from an SD module to the

ATMEGA2560 microcontroller (Atmel, 2014).

CNN is made up of thirteen layers, including the

input layer as shown in Table 1. The outputs of

these thirteen layers must be stored in SRAM

memory because their value is constantly

changing. To reduce the amount of SRAM

memory required, we merge the convolution and

max-pooling layers. Figure 2 shows how was

reduced the number of outputs from 13 to 9. We

calculate all the output values of the

convolutional layers, but we only store the

outputs of the max-pooling layers.

Fig. 2. Convolutional Neural Network with

fusion of some layers
Source: Authors own creation

At the output layer, negative values correspond

to a non-fibrillated signal and positive values to

fibrillated signals. We use this fact to change the

activation function Sigmoid (Zhang, C., &

Woodland, P. C, 2015), in the FC3 layer, by the

function Hard-Limit (MATLAB hardlim, 2020).

The Hard-Limit function assigns 0 to negative

values and 1 to positive values, so this function

converts the CNN output into a binary output.

This change reduces the number of bits needed to

store CNN output data. Table 6 shows the

memory usage in the ATMEGA2560

microcontroller. The network parameters were

stored in FLASH memory because the numeric

value does not change after stored. To store the

network parameters, we use the PROGMEM

function (PROGMEM, 2020). The intermediate

values are stored in SRAM memory because

these values change with each inference.

EEPROM memory was not used because it is

small and has few write cycles. The implemented

network has an inference time of 677[ms] using

an oscillator of 12[MHz]. This inference time is

enough for this application because the intervals

of the ECG signal are collected each two

seconds.

Table 6: Memory used on the MCU

implementation

Source: Authors own creation

We developed a code in MATLAB to emulate

the inference process carried out in the

microcontroller. We use this code to validate the

accuracy of the network for the quantized

methods tested in this work.

5. RESULTS

Table 7 summarizes the results obtained in this

work. In this table, we compare the accuracy of

the quantization methods against the CNN at 64-

bits double-precision floating point format

(Unquantized). We also show the percentage of

accuracy loss regarding unquantized network.

Finally, we indicate the possibility of

implementing each quantized model in an-8-bit

microcontroller.

Table 7: Accuracy, loss accuracy and

supported for each quantization methods

Source: Authors own creation

Universidad de Pamplona

5

 CIETA

The results show that the network quantized with

the Dynamic Layer Quantization method has the

best accuracy.

6. CONCLUSIONS

In this work, four quantization methods were

tested to implement the Castillo-Granados CNN

into an 8-bit microcontroller (ATMEGA2560).

First, we used the TensorFlow backend to

quantize the network. Our result showed that

TensorFlow quantization significantly reduces

the precision of the network. The best results

regarding accuracy were obtained by a method

that we called Dynamic Layer Quantization. Our

results showed that the implementation achieves

an accuracy of 89.48%, and only uses the 10% in

the FLASH memory and 54% in the SRAM

memory. A future job will focus on using post

quantization strategies, which have proved to

improve the accuracy of fake-quantized CNN

(Song Han, 2017). This work is part of a project

that seeks the development of a low-cost portable

device for the early diagnosis of AF.

7. REFERENCES

Roeder, L. (2020). Netron. In PyPI. Retrieved

from https://pypi.org/project/netron/

Google. (2020). Post-training Quantization for

Size | TensorFlow Lite. In TensorFlow.

Retrieved from

https://www.tensorflow.org/lite/performan

ce/post_training_quant

Yao, Z., Zhu, Z., & Chen, Y. (2017). Atrial

fibrillation detection by multi-scale

convolutional neural networks. 2017 20th

International Conference on Information

Fusion (Fusion), 1–6.

Kwasniewska, A., Szankin, M., Ozga, M.,

Wolfe, J., Das, A., Zajac, A., Ruminski, J.,

& Rad, P. (2019). Deep Learning

Optimization for Edge Devices: Analysis

of Training Quantization Parameters.

IECON 2019-45th Annual Conference of

the IEEE Industrial Electronics Society, 1,

96–101.

Goldberger, A. L., Amaral, L. A. N., Glass, L.,

Hausdorff, J. M., Ivanov, P. C., Mark, R.

G., Mietus, J. E., Moody, G. B., Peng, C.,

& Stanley, H. E. (2000). The MIT-BIH

Atrial Fibrillation Database. Retrieved

from

http://physionet.incor.usp.br/physiobank/da

tabase/afdb/

Seo, S., & Kim, J. (2019). Efficient Weights

Quantization of Convolutional Neural

Networks Using Kernel Density Estimation

based Non-uniform Quantizer. Applied

Sciences, 9(12), 2559.

Zhang, C., & Woodland, P. C. (2015).

Parameterised sigmoid and ReLU hidden

activation functions for DNN acoustic

modelling. Sixteenth Annual Conference of

the International Speech Communication

Association.

Xia, Y., Wulan, N., Wang, K., & Zhang, H.

(2018). Detecting atrial fibrillation by deep

convolutional neural networks. Computers

in Biology and Medicine, 93, 84–92.

Arduino Reference - PROGMEM. (2020). In

Arduino.cc. Retrieved from

https://www.arduino.cc/reference/tr/langua

ge/variables/utilities/progmem/

Song Han. (2017). EFFICIENT METHODS AND

HARDWARE FOR DEEP LEARNING

(Issue September). STANFORD

UNIVERSITY.

Castillo, J. A., Granados, Y. C., & Fajardo, C. A.

(2020). Patient-Specific Detection of Atrial

Fibrillation in Segments of ECG Signals

using Deep Neural Networks. Ciencia E

Ingenieria Neogranadina, 30(1). doi:

https://doi.org/10.18359/rcin.4156

Google. (2020). TensorFlow Lite guide. In

TensorFlow. Retrieved from

https://www.tensorflow.org/lite/guide.

Gupta, S., Agrawal, A., Gopalakrishnan, K., &

Narayanan, P. (2015). Deep Learning with

Limited Numerical Precision. 37. doi:

10.1109/72.80206

Atmel. (2014). ATmega 640/V-1280/V-1281/V-

2560/V-2561/V - Datasheet. 435. Retrieved

from

https://ww1.microchip.com/downloads/en/

devicedoc/atmel-2549-8-bit-avr-

microcontroller-atmega640-1280-1281-

2560-2561_datasheet.pdf

Agarap, A. F. (2018). Deep learning using

rectified linear units (relu). ArXiv Preprint

ArXiv:1803.08375.

Pourbabaee, B., Roshtkhari, M. J., & Khorasani,

K. (2018). Deep convolutional neural

Universidad de Pamplona

6

 CIETA

networks and learning ECG features for

screening paroxysmal atrial fibrillation

patients. IEEE Transactions on Systems,

Man, and Cybernetics: Systems, 48(12),

2095–2104.

Lip, G. Y. H., Fauchier, L., Freedman, S. B., Van

Gelder, I., Natale, A., Gianni, C., Nattel,

S., Potpara, T., Rienstra, M., Tse, H.-F., &

Lane, D. A. (2016). Atrial fibrillation.

Nature Reviews Disease Primers, 2(1),

16016. doi: 10.1038/nrdp.2016.16

Krishnamoorthi, R. (2018). Quantizing deep

convolutional networks for efficient

inference: A whitepaper. 7–8. Retrieved

from http://arxiv.org/abs/1806.08342

Nagel, M., Amjad, R., Baalen, M., Louizos, C.,

& Blankevoort, T. (2020). Up or Down ?

Adaptive Rounding for Post-Training

Quantization. ArXiv Preprint.

Sripad, A., & Snyder, D. (1977). A necessary

and sufficient condition for quantization

errors to be uniform and white. IEEE

Transactions on Acoustics, Speech, and

Signal Processing, 25(5), 442–448.

Hard-limit transfer function - MATLAB hardlim.

(2020). In MathWorks América Latina.

Retrieved from

https://la.mathworks.com/help/deeplearnin

g/ref/hardlim.html

Kim, D., Yim, H. Y., Ha, S., Lee, C., & Kang, I.

(2018). Convolutional Neural Network

Quantization using Generalized Gamma

Distribution. ArXiv Preprint

ArXiv:1810.13329.

Athar, A. (2018). An Overview of Datatype

Quantization Techniques for Convolutional

Neural Networks. ArXiv Preprint

ArXiv:1808.07530.

Tang, C. Z., & Kwan, H. K. (1993). Multilayer

feedforward neural networks with single

powers-of-two weights. IEEE Transactions

on Signal Processing, 41(8), 2724–2727.

Schwarz, E. M. (1996). Rounding for

quadratically converging algorithms for

division and square root. Conference

Record of The Twenty-Ninth Asilomar

Conference on Signals, Systems and

Computers, 1, 600–603.

