

Universidad de Pamplona

1

 CIETA

HEARING THE VOICE OF SOFTWARE ARCHITECTS ON PAYMENT-
RELATED PRACTICES OF TECHNICAL DEBT IN COLOMBIA

ESCUCHANDO LA OPINIÓN DE LOS ARQUITECTOS DE SOFTWARE

SOBRE LAS PRÁCTICAS DE PAGO DE LA DEUDA TÉCNICA EN COLOMBIA

PhD. Darío Correal2, MSc. Boris Pérez1,2,
MSc. Camilo Castellanos2

1 Universidad Francisco de Paula Santander, Facultad de Ingeniería, Grupo de

Investigación en Inteligencia Artificial (GIA)
E-mail: {borisperezg}@ufps.edu.co

2 Universidad de los Andes, Facultad de Ingeniería, Grupo de Investigación en
Tecnologías de Información y Construcción de Software (TICSw)

E-mail: {dcorreal, br.perez41, cc.castellanos87}@uniandes.edu.co

Abstract: Technical debt (TD) describes technical decisions that can give the company a
benefit in the short term but possibly hurting the overall quality of the software in the
long term. Architectural decisions are considered one of the most common sources of TD,
therefore, it becomes relevant to understand what practices related to TD payment are
considered by software architects in comparison with engineers and managers. To this
end, we used a survey research method to collect and analyze a corpus of 28 software
architects from Colombia. Results showed that refactoring is the most cited practice by all
three groups, being the most cited practice by software architects (42.9%). Additionally,
practices related to prevention and creation of a favorable setting as part of TD payment
initiatives were cited. In the end, everything leads to the source code, then becoming the
first place to pay the debt.

Keywords: technical debt, payment practices, software architecture, insightd

Resumen: La deuda técnica (DT) describe las decisiones técnicas que pueden beneficiar a
la empresa a corto plazo pero que posiblemente perjudiquen la calidad del software a
largo plazo. Las decisiones de arquitectura son la principal fuente TD, por lo tanto, se
hace relevante entender qué prácticas asociadas al pago de la TD son consideradas por los
arquitectos de software en comparación con los ingenieros y gerentes. Para esto, se utilizó
una encuesta que permitió recoger y analizar un corpus de 28 arquitectos de software de
Colombia. Los resultados mostraron que la refactorización (refactoring) es la práctica más
citada por los tres grupos, siendo la más citada por los arquitectos de software (42.9%).
Además, se citaron prácticas relacionadas con la prevención y la creación de un entorno
favorable para pagar la TD. Al final, todo lleva al código fuente, convirtiéndose en el
primer lugar para pagar la deuda.

Palabras clave: deuda técnica, prácticas de pago, arquitectura de software, insightd.

1. INTRODUCION

Software companies usually have to deal with
tight schedules and deadlines to release software
in faster cycles, and therefor, increasing the
pressure for the development teams (Yli-Huumo

et al., 2016). Technical debt (TD) represents
technical decisions that can give the company a
benefit in the short term (Kruchten et al., 2012;
Verdecchia, 2018) but possibly hurting the
overall quality of the software and the
productivity of the development team in the long

Universidad de Pamplona

2

 CIETA

term. Among these technical decisions,
architectural decisions are the most important
source of TD (Ernst et al., 2015). Therefore, it
becomes crucial to understand how TD is
perceived by software architects, in terms of
practices to deal with TD.

Despite its relevance, there is still a lack of
empirical evidence about TD payment-related
practices used by software architects in real-life
software development teams (Li et al., 2016;
Rios et al., 2018a; Seaman and Guo, 2011;
Power, 2013).

This study focuses on the acknowledgment of the
practices used on TD payment from the point of
view of software architects in real-life software
systems projects in Colombia. To achieve this,
we performed an industrial survey with 28
software architects from 132 software
practitioners in Colombia. These answers were
compared against answers from management
roles (project manager, business analyst, etc) and
engineering roles (developer, tester, etc). The
contributions of this work are two-fold. First, this
study presents a list of the TD payment-related
practices (refactoring being the most cited). And
second, a numerical comparison of similarity
between the list of practices cited by software
architects against management and engineer
groups.

Software practitioners can benefit from this
proposal to support the selection of strategies to
keep their software systems healthy, thought the
improvement of the existing processes and tools.

The rest of the paper is organized as follows: in
Section 2 we present a description of the
InsighTD project history. In Section 3, we
present the survey design, whose results are
presented in Section 4. Implications for
researchers and practitioners are presented in
Section 5. Section 6 presents the comparison to
previous work. Finally, in Section 7, we present
threats to validity, and in Section 8 we conclude
the paper.

2. INSIGHTD PROJECT

InsighTD is a globally distributed family of
industrial surveys initiated in 2017 and planned
cooperatively among Technical Debt (TD)
researchers from around the world. Main goal of
this project is to organize an open and
generalizable set of empirical data on the state of
practice in the TD area. To date, researchers
from Brazil, Chile, Colombia, Costa Rica,
Finland, India, Italy, Norway, Saudi Arabia,
Serbia, and the United States have joined the
project.

Rios (Rios et al., 2018b) discussed the basic
survey design and the preliminary results of the
first round of InsighTD, and complemented this
discussion, focusing specifically on the causes
and effects of TD in agile software projects.
Pérez (Pérez et al., 2019) focused on how
practitioners react to the presence of debt in the
Chilean software industry. More recently, Freire
(Freire et al., 2020) investigated preventive
actions that can be used to curb the occurrence of
TD and the impediments that hamper the use of
those actions.

Thus, although significant analysis has already
been conducted over the available InsighTD data,
much still remains to be studied. In particular, a
noticeably absent and important perspective is
the one from the architect's point of view.

3. METHODOLOGY

This research was designed with the goal of
characterizing comprehensively the current state
of practices related to TD payment. Based on our
research goal, we derived the following two
research questions:

RQ1: From a software architect's point of view,
what are the practices related to TD payment
used by software development teams?

RQ2: Is there any difference of TD payment-
related practices among software architects,
engineers and managers?

Data gathering was done using Google Forms.
This tool allowed us to increase the number of
possible participants. Invitations were sent by
email to software practitioners and the survey
was anonymous. Survey questions were defined
within the InsighTD replication package and was
made up of 28 questions, previously described in
(Rios et al., 2018b).

Demographics questions (Q1 to Q8) ask
participants about, for example, the size of
his/her company, size of the system (in terms of
LOC) he/she is working on, number of people
involved in that project, participant’s role, and
her/his level of experience in that role. Questions
Q9 to Q15 seek information about how familiar
the respondent is with the TD concept. Questions
Q16 to Q19 support the identification of the
causes that lead development teams to insert debt
items into their projects. Questions Q20 and Q21
look to identify effects of the presence of TD in
software projects. Finally, Questions Q22 to
Q28, were used to provide an understanding on
how TD has been managed in practice, in
particular with respect to prevention, repayment,

Universidad de Pamplona

3

 CIETA

and monitoring. The full questionnaire was
previously presented in (Rios et al., 2018b). In
the context of this work, we considered for
analysis the characterization (Q1-Q8) and
payment practices of TD (Q26 and Q27).

Questionnaire validation included three steps: an
internal validation, an external validation, and a
pilot study (Rios et al., 2018b). To reach the
target population (software practitioners) we
utilized the social media platform LinkedIn.
LinkedIn gave us direct access to a large number
of professionals with whom we did not have
previous contact.

The survey instrument is composed of a mix of
closed and open questions. For closed-ended
questions, we used descriptive statistics to get a
better understanding of the data. Answers for
open-ended questions were codified using a code
schema provided with the InsighTD replication
package. We initially applied manual open
coding resulting in a set of codes. The process
was performed iteratively revising and unifying
codes at each cycle of analysis until reaching the
state of saturation, i.e., a point where no new
codes were identified.

Data analysis was done focusing on architects
and comparing its results against management
and engineer groups. We are aware that software
architects could be part of the engineer group,
however, considering the focus of this study, it
was decided to have software architects as a
distinct group.

4. RESULTS

In total, 132 practitioners answered the survey.
After filtering answers according to their role, we
found 28 (21.2%) participants classified as
software architects, 37 (28%) as managers and
67 (50.8%) as engineers, as presented in Fig. 1.

Fig. 1. Practitioners distribution by role

Participants are well distributed among small
(28.6%), medium (46.4%), and large (25%)
companies. Related to the size of development
teams, most (28.6%) reported working in teams
of 5-9 people and teams of 10-20 people
(28.6%). Regarding the age of the system

developed in the project, most indicated age 1 to
2 years (46.4%). There are also a significant
number of systems represented from 2 to 5 years
(21.4%). Most respondents identified themselves
as proficient (39.3%), followed by expert
(28.6%), and competent (21.4%). In general, the
questionnaire was answered by professionals
with experience in their functions.

4.1 Main Practices Related to TD Payment
(RQ1)

Fig. 2 presents the most commonly cited
practices used and related to TD payment used
by development teams from the point of view of
software architects (Questions 26 and 27). The
first two practices correspond to 62% of the set
of all practices.

Fig. 2. Practices related to TD payment

From Fig. 2, we can observe that “refactoring” is
the most cited practice used for TD payment (9
citations) form the point of view of the software
architects. Refactoring consists of performing a
series of small behavior-preserving
transformations to improve an existing code,
design or architecture of a software system (Li et
al., 2015). This practice is two times greater than
the second most cited practice: “Improve design”
(4 citations). According to Ernst (Ernst et al.,
2015), architecture debt is the most common
source of technical debt, so it is expected to have
this practice (improve design) at least in the first
three positions. “Code reviewing” is in third
place followed by “improve testing”. These two
last practices could be considered good practices.
Following activities are: “Adoption of good
practices”, “backlog inclusion”, “external tools”
and “technology/tool chance”.

By going further into the analysis of the whole
set of practices, we realize that some practices do
not allow the elimination of TD items. For
instance, the practice “adoption of good
practices” contributes to create a favorable

Universidad de Pamplona

4

 CIETA

scenario for eliminating TD items but does not
eliminate the item by itself. Other practices such
as “improve testing” can be seen as preventative
practices. Thus, TD payment-related practices
encompass practices associated with TD
payment, prevention, and also the creation of a
favorable scenario for paying off debt items.

All of these practices can be considered as
technical issues; therefore, technical issues are
important practices related to TD payment for
software architects.

4.2 Comparison of TD payment practices among
Software Architects, Engineers and Managers
(RQ2)

In this work, we investigate how different or
similar these practices are (perceived by software
architects) in comparison with the other two
groups: engineering and management. In Fig. 3,
the top four practices by role are presented.

Fig. 3. Top four practices related to TD payment

in all roles

Results showed that all three groups have
“refactoring” as the most cited practice. This is
the only similarity among the groups. Software
architect and engineer groups also share
“improve design” practice. Engineer and
management groups share “time extension” with
similar percentage. Activities for management
group look more focused in the management
aspect of the software development process. In
the other side, architect and engineer groups are
more focused in the technical aspect of the
software development process.

Fig. 3 support the understanding of differences
by doing a visual comparison. However, there is
a necessity to improve this comparison by
measuring quantitatively how similar the TD
payment practices among the three groups are.
We used a similarity measure for indefinite

rankings called Rank-Biased Overlap – RBO
(Webber et al., 2010). RBO is defined as
follows:

 (1)

where S and T are the ranked lists; p is the
probability of looking for overlap at depth d + 1
after having examined element at d. The smaller
the p value, the more top-weighted the metric.
A_d is the agreement between S and T at depth d,
i.e. the proportion of S and T that are overlapped.
Fig. 4 depicts the RBO comparison among the
list of TD practices of the three groups (one line
for each pair of groups). By increasing the p
value, this comparison aims to explore how
similar these practices are per group at the top of
their rankings and at the bottom of their
rankings. Comparison went from p=0.5 (top 2
elements approx.) to p=0.97 (top 33 elements
approx.).

Fig. 4. RBO of TD payment-related practices

For p=0.5, the Engineer-Architect pair showed
the highest similarity (RBO=0.77), but at
p=0.97, the RBO of this pair decreased to 0.5.
This means that the more practices are compared,
the less similar they are. This could be explained
considering the number of items of both lists.
Also, this behavior would be more or less
expected when comparing lists. On the other
hand, the Management-Architect pair showed the
lowest similarity at p=0.5 and p=0.97. This
means that payment-related practices described
by these two lists are different in comparison
with the other two pairs of lists. The last pair,
Management-Engineer ended being the most
similar pair among the others. At p=0.97, the
RBO was 0.62. This result doesn’t imply that
management and engineer roles are the most
similar of all, but only that, in the case of this
study, this pair has more similarities in the TD
payment-related practices.

5. DISCUSSION

Section 4 presented “refactoring” as two times
greater than the second most cited practice,

Universidad de Pamplona

5

 CIETA

“improve design”. Refactoring is a technique for
improving the design of an existing code base. In
the vast amount of answers, refactoring was used
by software teams in terms of this definition, in
other words, code refactoring. Refactoring of
designs or architectures was coded under other
practices such as: “Improve design” or
“architectural changes”.

There are payment-related practices that would
require a deeper analysis, for example: “Code
reviewing”. This is not a practice to pay off the
debt, but it is a practice that is more likely to
contribute to create a favorable scenario for
eliminating TD items, and it does not eliminate
the item by itself. Other examples of practices
are: “Budget increase” and “time extension”.
More time could mean injecting more debt while
fixing the code. And also, the team would need
more time to fix some issues along with the debt.
Increasing the budget of the project will also
mean that the software team would have to
include new functionalities and not only pay off
the debt. No client will pay for fixing code issues
that the user will not see. It is important to
remark that TD consequences are related to
maintainability and evolvability.

These payment practices by themselves are not
enough. It is necessary to analyze the differences
among them in order to understand the nature of
the required changes (improvements) and the
resources needed. For example, the frequency of
the payment practice: a software team can either
choose to pay TD continuously, occasionally, or
not at all (Yli-Huumo et al., 2016). Martini and
Bosch (Martini et al., 2015), suggest that TD
should be payed using partial repayments. In this
way, the risk associated with the payment of the
debt can be minimized.

Another aspect that needs to be considered is the
cost related to the debt. How much would it cost
to pay off the debt? vs. How much does it cost to
maintain the debt? According to Martini and
Bosch (Martini et al., 2015), it could be more
profitable to delay the refactoring, i.e. continue
paying interest.

As can be seen, it is not just about the payment
of the debt, it is also about the analysis of several
aspects before any decision are made.

6.1Implications to researchers and practitioners

Software practitioners can benefit from the
results of this study by using the list of the most
cited practices related to TD payment used in the
Colombian industry as a guide to support initial
efforts to understand their debt and to pay it off
from their software projects.

For researchers, our results support future
research by providing insights into software
practitioners' perspectives on causes leading to
TD occurrence and practices related to TD
payment. Finally, the global family of surveys
not only allows researchers to reproduce the
results and their interpretation, but also allows
practitioners to evaluate their own TD situation
against overall industrial trends.

6. RELATED WORK

Although there are previous works that point out
some causes and effects of TD (Yli-Huumo et
al., 2014; Ernst et al., 2015), their sample sizes
tend to be quite small, or limited to a small
number of organizations. Besides, a predefined
list of TD causes constrained participants to fit
their experience into that list. Further, half of the
relevant studies focused on architectural TD, just
one type of debt, and payment related practices
have not been sufficiently studied.

The survey presented in (Ernst et al., 2015)
reports the results obtained from 1,831 software
practitioners. They studied the common
understanding of the TD term, how much of
technical debt is architectural, and the
management practices and tools used to deal with
TD. In (Yli-Huumo et al., 2014), Yli-Huumo
investigated the causes and effects of TD by
interviewing 12 persons in a Finnish software
company. Their results reported that TD is
mainly the result of intentional decisions to reach
deadlines, and customer satisfaction was the
main reason for taking TD in the short-term, but
it turned to economic and quality issues in the
long-term.

Related to InsighTD, although initial analysis has
already been conducted over the available data,
much still remains to be studied. In particular,
the data has yet to be analyzed with regards to
how TD is perceived by architects, and how this
perception change among other groups. Pacheco
(Pacheco et al., 2019) reported another InsighTD
replication in Costa Rica, where 156 software
professionals reported that TD was the product
of preventable situations, TD was monitored for
slightly more than half of the cases, and TD was
not paid in most cases.

To summarize, this work becomes a part of the
InsighTD project, but, unlike the previous
replications, we aim to study the TD causes and
practices related to TD payment from the point
of view of software architects, and how these
causes and payment practices can be associated.

Universidad de Pamplona

6

 CIETA

7. THREATS TO VALIDITY

There are threats to validity in this work that we
attempt to mitigate and remove entirely when
possible. First, regarding construct validity, to
prevent hypothesis guessing and evaluation
apprehension (Wohlin et al., 2012), we explained
in the invitation to the survey the goal of the
study and request that interviewees reply to
questions by relying on their own background.
Second, regarding conclusion validity, to avoid
potential coding process dependencies on the
researcher's subjective criteria, the coding
activity was performed individually by two
researchers, and then, discussed until an
agreement was reached.

Maturation is the main threat to internal validity
of this study. It implies that the participants can
react differently as time passes, in this case, if the
survey is too long (Wohlin et al., 2012). The fact
that all participants answered the whole
questionnaire is a signal of that this threat was
not raised. Finally, regarding external validity,
although the results cannot be generalized, the
population provides representative results from
the perspective of the software industry.

8. CONCLUSIONS

The contributions of this work are two-fold.
First, we presented a list of the practices
(refactoring being the most cited) related to TD
payment. And second, a numerical comparison
of similarity between the list of practices cited by
software architects against management and
engineer groups were presented. These
contributions were done from the point of view
of 28 software architects from Colombia. Results
were compared against answers from engineering
and management groups in order to improve the
understanding of the insights.

We found that “refactoring” is the main practice
used to pay off the debt, followed by “improve
design” and “code reviewing”. Refactoring was
also the main practice in all three groups. This
could be the only similarity among the three
groups, having software architects and engineer
the most similar list of practices.

Activities for management group were more
focused in the management aspect of the
software development process. In the other side,
architect and engineer groups were more focused
in the technical aspect of the software
development process.

The next steps of this research include: (i) a
deeper analysis (including demographics
variables) to identify possible patterns of TD

payment related practices, (ii) investigation of
how or if types of debt influence them, (iii)
running other possible analyses including others
reactions to TD, such as monitoring practices and
preventative actions. We have also yet to include
the replication data from other countries such as:
Finland, Saudi Arabia, Serbia, and Costa Rica.

REFERENCES

Ernst N., Bellomo S., Ozkaya I., Nord R., and

Gorton I. (2015). Measure it? Manage it?
Ignore it? software practitioners and
technical debt. In Proceedings of the 10th
Joint Meeting on Foundations of Software
Engineering. Association for Computing
Machinery, New York, NY, pp- 50–60.

Freire S., Mendonça M., Falessi D., Seaman C.,
Izurieta C. and Spínola R. (2020). Actions
and impediments for technical debt
prevention: Results from a global family of
industrial surveys. To appear in proceedings
of the 35th ACM/SIGAPP Symposium On
Applied Computing.

Kruchten P., Nord R., and Ozkaya I. (2012).
Technical Debt: From Metaphor to Theory
and Practice. IEEE Software, Vol. 29, No.
6.

Li Z., Avgeriou P. and Peng L. (2015). A
systematic mapping study on technical debt
and its management. Journal of Systems
and Software, Vol. 101, pp. 193-220.

Martini A., Bosch J. and Chaudron M. (2015).
Investigating architectural technical debt
accumulation and refactoring over time.
Information Software Technology, Vol. 67,
No. C.

Pacheco A., Marín-Raventós G. and López G.
(2019). Technical Debt in Costa Rica: An
InsighTD Survey Replication. In
proceedings of the International Conference
on Product-Focused Software Process
Improvement, pp. 236-243.

Pérez B., Brito J, Astudillo H, Correal D, Rios
N., Spínola R., Mendonça M. and Seaman
C. (2019). Familiarity, causes and reactions
of software practitioners to the presence of
technical debt: A replicated study in the
chilean software industry. In proceedings of
the 38th International Conference of the
Chilean Computer Science Society, pp.1-7.

Power K. (2013). Understanding the impact of
technical debt on the capacity and velocity
of teams and organizations: viewing team
and organization capacity as a portfolio of
real options. In Proceedings of the 4th
International Workshop on Managing
Technical Debt (MTD ’13). IEEE Press,
28–31.

Universidad de Pamplona

7

 CIETA

Rios N., Mendonça M. and Spínola R. (2018a).
A tertiary study on technical debt: Types,
management strategies, research trends, and
base information for practitioners.
Information and Software Technology, Vol.
102, pp. 117-145.

Rios N., Spínola R., Mendonça M. and Seaman
C. (2018b). The Most Common Causes and
Effects of Technical Debt: First Results
from a Global Family of Industrial Surveys.
In proceedings of the 12th ACM/IEEE
International Symposium on Empirical
Software Engineering and Measurement,
No. 39, pp. 1-10.

Seaman C., Guo Y. (2011). Chapter 2 -
Measuring and Monitoring Technical Debt.
Advances in Computers, Vol. 82, pp. 25-46.

Verdecchia R. (2018). Architectural Technical
Debt Identification: Moving Forward. In
proceedings of the IEEE International
Conference on Software Architecture
Companion (ICSA-C), Seattle, WA, pp. 43-
44.

Webber W., Moffat A. and Zobel J. (2010). A
Similarity Measure for Indefinite Rankings.
ACM Trans. Inf. Syst, Vol. 28, No. 4.

Wohlin C., Runeson P., Hst M., Ohlsson M.,
Regnell B. and Wessln A. (2012).
Experimentation in Software Engineering.
Springer Publishing Company,
Incorporated.

Yli-Huumo J., Maglyas A., and Smolander K.
(2014). The sources and approaches to
management of technical debt: A case study
of two product lines in a middle-size finnish
software company. In proceedings of the
International Conference on Product-
Focused Software Process Improvement.

Yli-Huumo J., Maglyas A., and Smolander K.
(2016). How do software development
teams manage technical debt? - An
empirical study. Journal of Systems and
Software, Vol. 120, No. C

